Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Reza S. Abhari is active.

Publication


Featured researches published by Reza S. Abhari.


Journal of Turbomachinery-transactions of The Asme | 2008

Flow Physics and Profiling of Recessed Blade Tips: Impact on Performance and Heat Load

Bob Mischo; T. Behr; Reza S. Abhari

In axial turbine, the tip clearance flow occurring in rotor blade rows is responsible for about one-third of the aerodynamic losses in the blade row and in many cases is the limiting factor for the blade lifetime. The tip leakage vortex forms when the leaking fluid crosses the gap between the rotor blade tip and the casing from pressure to suction side and rolls up into a vortex on the blade suction side. The flow through the tip gap is both of high velocity and of high temperature, with the heat transfer to the blade from the hot fluid being very high in the blade tip area. In order to avoid blade tip burnout and a failure of the machine, blade tip cooling is commonly used. This paper presents the physical study and an improved design of a recessed blade tip for a highly loaded axial turbine rotor blade with application in high pressure axial turbines in aero engine or power generation. With use of three-dimensional computational fluid dynamics (CFD), the flow field near the tip of the blade for different shapes of the recess cavities is investigated. Through better understanding and control of cavity vortical structures, an improved design is presented and its differences from the generic flat tip blade are highlighted. It is observed that by an appropriate profiling of the recess shape, the total tip heat transfer Nusselt number was significantly reduced, being 15% lower than the flat tip and 7% lower than the base line recess shape. Experimental results also showed an overall improvement of 0.2% in the one-and-a-half-stage turbine total efficiency with the improved recess design compared to the flat tip case. The CFD analysis conducted on single rotor row configurations predicted a 0.38% total efficiency increase for the rotor equipped with the new recess design compared to the flat tip rotor.


Journal of Turbomachinery-transactions of The Asme | 2006

Modeling of Film Cooling—Part I: Experimental Study of Flow Structure

Stefan Bernsdorf; Martin G. Rose; Reza S. Abhari

This paper, which is Part I of a two part paper, reports on experimental data taken in a steady flow, flat plate wind tunnel at ETH Zurich, while Part II utilizes this data for calibration and validation purpose of a film cooling model embedded in a 3D CFD code. The facility simulates the film cooling row flow field on the pressure side of a turbine blade. Engine representative nondimensionals are achieved, providing a faithful model at larger scale. Heating the freestream air and strongly cooling the coolant gives the required density ratio between coolant and freestream. The three dimensional velocities are recorded using nonintrusive PIV; seeding is provided for both air streams. Two different cylindrical hole geometries are studied, with different angles. Blowing ratio is varied over a range to simulate pressure side film cooling. The three dimensional flow structures are revealed.


Journal of Turbomachinery-transactions of The Asme | 2007

Unsteady Flow Physics and Performance of a One-and-1∕2-Stage Unshrouded High Work Turbine

T. Behr; A. I. Kalfas; Reza S. Abhari

This paper presents an experimental study of the flow mechanisms of tip leakage across a blade of an unshrouded turbine rotor. It shows the design of a new one-and-1/2-stage, unshrouded turbine configuration, which has been developed within the Turbomachinery Laboratory of ETH Zurich. This test case is a model of a high work (Δh/u 2 = 2.36) axial turbine. The experimental investigation comprises data from unsteady and steady probe measurements, which has been acquired around all the bladerows of the one-and-1/2-stage, unshrouded turbine. A newly developed 2-sensor Fast Response Aerodynamic Probe (FRAP) technique has been used in the current measurement campaign. The paper contains a detailed analysis of the unsteady interaction between rotor and stator blade rows, with particular attention paid on the flow in the blade tip region. It has been found that the interaction of the rotor and the downstream stator has an influence on the development of the tip leakage vortex of the rotor. The vortex is modulated by the stator profiles and shows variation in size and relative position to the rotor trailing edge when it stretches around the stator leading edge. Thereby a deflection of the tip leakage vortex has been observed, which expresses in a varying circumferential distance between two neighboring vortices of ±20% of a rotor pitch. Furthermore, a significant influence of quasi-stationary secondary flow features of the upstream stator row on the secondary flow of the rotor has been detected. The geometry and flow field data of the one-and-1/2-stage turbine will be available to the turbomachinery community for validation and improvement of numerical tools.


Journal of Propulsion and Power | 2007

Turbulence Measurements and Analysis in a Multistage Axial Turbine

L. Porreca; Marc Hollenstein; A. I. Kalfas; Reza S. Abhari

This paper presents turbulence measurements and detailed flow analysis in an axial turbine stage. Fast response aerodynamic probes were used to resolve aperiodic fluctuations along the three directions. Assuming incompressible flow, the effective turbulence level and Reynolds stress are retrieved by evaluating the stochastic velocity component out of the measured time-resolved pressure and flow angle fluctuations along the streamwise, radial, and circumferential direction. A comparison between turbulence intensity and measured total pressure shows that flow structures with higher turbulence level are identified in the region of loss cores at the exit of the second stator passage. Turbulence intensity is evaluated under isotropic and nonisotropic assumption in order to quantify the departure from isotropic conditions. The measurements show that locally the streamwise fluctuating component can be twice bigger than the radial and tangential component. The current analysis shows that multisensor fast response aerodynamic probes can be used to provide information about the mean turbulence levels in the flow and the Reynolds stress tensor, in addition to the measurements of unsteady total pressure loss.


Journal of Turbomachinery-transactions of The Asme | 2010

Improving Efficiency of a High Work Turbine Using Nonaxisymmetric Endwalls— Part I: Endwall Design and Performance

T. Germain; M. Nagel; I. Raab; P. Schüpbach; Reza S. Abhari; Martin G. Rose

This paper is the first part of a two part paper reporting the improvement of efficiency of a one-and-half stage high work axial flow turbine by nonaxisymmetric endwall contouring. In this first paper the design of the endwall contours is described, and the computational fluid dynamics (CFD) flow predictions are compared with five-hole-probe measurements. The endwalls have been designed using automatic numerical optimization by means of a sequential quadratic programming algorithm, the flow being computed with the 3D Reynolds averaged Navier-Stokes (RANS) solver TRACE. The aim of the design was to reduce the secondary kinetic energy and secondary losses. The experimental results confirm the improvement of turbine efficiency, showing a stage efficiency benefit of 1% ± 0.4%, revealing that the improvement is underestimated by CFD. The secondary flow and loss have been significantly reduced in the vane, but improvement of the midspan flow is also observed. Mainly this loss reduction in the first row and the more homogeneous flow is responsible for the overall improvement. Numerical investigations indicate that the transition modeling on the airfoil strongly influences the secondary loss predictions. The results confirm that nonaxisymmetric endwall profiling is an effective method to improve turbine efficiency but that further modeling work is needed to achieve a good predictability.


Journal of Turbomachinery-transactions of The Asme | 2004

Investigation of an Inversely Designed Centrifugal Compressor Stage—Part I: Design and Numerical Verification

M. Zangeneh; Matthias Schleer; F. Pløger; S. S. Hong; C. Roduner; B. Ribi; Reza S. Abhari

In this paper the three-dimensional inverse design code TURBOdesign-1 is applied to the design of the blade geometry of a centrifugal compressor impeller with splitter blades. In the design of conventional impellers the splitter blades normally have the same geometry as the full blades and are placed at mid-pitch location between the two full blades, which can usually result in a mismatch between the flow angle and blade angles at the splitter leading edge. In the inverse design method the splitter and full blade geometry is computed independently for a specified distribution of blade loading on the splitter and full blades. In this paper the basic design methodology is outlined and then the flow in the conventional and inverse designed impeller is compared in detail by using computational fluid dynamics (CFD) code TASCflow. The CFD results confirm that the inverse design impeller has a more uniform exit flow, better control of tip leakage flow and higher efficiency than the conventional impeller. The results also show that the shape of the trailing edge geometry has a very appreciable effect on the impeller Euler head and this must be accurately modeled in all CFD computations to ensure closer match between CFD and experimental results. Detailed measurements are presented in part II of the paper.


Journal of Solar Energy Engineering-transactions of The Asme | 2011

Full-Scale Wind Turbine Near-Wake Measurements Using an Instrumented Uninhabited Aerial Vehicle

G. Kocer; Michel Mansour; Ndaona Chokani; Reza S. Abhari; M. Müller

In this paper, the first-ever measurements of the wake of a full-scale wind turbine using an instrumented uninhabited aerial vehicle (UAV) are reported. The key enabler for this novel measurement approach is the integration of fast response aerodynamic probe technology with miniaturized hardware and software for UAVs that enable autonomous UAV operation. The measurements, made to support the development of advanced wind simulation tools, are made in the near-wake (0.5D–3D, where D is rotor diameter) region of a 2 MW wind turbine that is located in a topography of complex terrain and varied vegetation. Downwind of the wind turbine, profiles of the wind speed show that there is strong three-dimensional shear in the near-wake flow. Along the centerline of the wake, the deficit in wind speed is a consequence of wakes from the rotor, nacelle, and tower. By comparison with the profiles away from the centerline, the shadowing effects of nacelle and tower diminish downstream of 2.5D. Away from the centerline, the deficit in wind speed is approximately constant ≈ 25%. However, along the centerline, the deficit is ≈ 65% near to the rotor, 0.5D–1.75D, and only decreases to ≈ 25% downstream of 2.5D.


Journal of Turbomachinery-transactions of The Asme | 2008

Experimental Flow Structure Investigation of Compound Angled Film Cooling

Vipluv Aga; Martin G. Rose; Reza S. Abhari

The experimental investigation of film-cooling flow structure provides reliable data for calibrating and validating a 3D feature based computational fluid dynamics (CFD) model being developed synchronously at the ETH Zurich. This paper reports on the flow structure of a film-cooling jet emanating from one hole in a row of holes angled 20 deg to the surface of a flat plate having a 45 deg lateral angle to the freestream flow in a steady flow, flat plate wind tunnel. This facility simulates a film-cooling row typically found on a turbine blade, giving engine representative nondimensionals in terms of geometry and operating conditions. The main flow is heated and the injected coolant is cooled strongly to obtain the requisite density ratio. All three velocity components were measured using a nonintrusive stereoscopic particle image velocimetry (PIV) system. The blowing ratio and density ratio are varied for a single compound angled geometry, and the complex three dimensional flow is investigated with special regard to vortical structure.


Journal of Turbomachinery-transactions of The Asme | 2005

Unsteady Flow Interactions Within the Inlet Cavity of a Turbine Rotor Tip Labyrinth Seal

Axel Pfau; J. Schlienger; D. Rusch; A. I. Kalfas; Reza S. Abhari

This paper focuses on the flow within the inlet cavity of a turbine rotor tip labyrinth seal of a two stage axial research turbine. Highly resolved, steady and unsteady three-dimensional flow data are presented. The probes used here are a miniature five-hole probe of 0.9 mm head diameter and the novel virtual four sensor fast response aerodynamic probe (FRAP) with a head diameter of 0.84 mm. The cavity flow itself is not only a loss producing area due to mixing and vortex stretching, it also adversely affects the following rotor passage through the fluid that is spilled into the main flow. The associated fluctuating mass flow has a relatively low total pressure and results in a negative incidence to the rotor tip blade profile section. The dominating kinematic flow feature in the region between cavity and main flow is a toroidal vortex, which is swirling at high circumferential velocity. It is fed by strong shear and end wall fluid from the pressure side of the stator passage. The static pressure field interaction between the moving rotor leading edges and the stator trailing edges is one driving force of the cavity flow. It forces the toroidal vortex to be stretched in space and time. A comprehensive flow model including the drivers of this toroidal vortex is proposed. This labyrinth seal configuration results in about 1.6% turbine efficiency reduction. This is the first in a series of papers focusing on turbine loss mechanisms in shrouded axial turbines. Additional measurements have been made with variations in seal clearance gap. Initial indications show that variation in the gap has a major effect on flow structures and turbine loss.


Journal of Turbomachinery-transactions of The Asme | 2008

Clearance Effects on the Onset of Instability in a Centrifugal Compressor

Matthias Schleer; Seung Jin Song; Reza S. Abhari

This report intends to shed an insight into the effect of large relative tip clearances on the onset of instability in a highly loaded centrifugal compressor. Time-resolved pressure measurements have been performed along the casing of a scaled-up model of a small compressor for two clearances at a wide range of operating conditions. Based on these time-resolved measurements, the pressure distribution along the meridional length and the blade loading distribution are calculated for each operating condition. In addition, the phase locked pressure fluctuation and its deviation are computed. The results show the behavior of each subcomponent of the compressor at different flow conditions and explain the role of the relative tip clearance on the onset of instability. For high mass-flow rates, the steady pressure distribution along the casing reveals that the inducer acts as an accelerating nozzle. Pressure is only built up in the radial part due to the centrifugal forces and in the subsequent diffuser due to area change. For off-design conditions, incidence effects are seen in the blade loading distribution at the leading edge while the inducer is unloaded. A region of high pressure deviation originates at the leading edge of the main blade and convects downstream. This feature is interpreted as the trajectory of the leakage vortex. The trajectory of these vortices is strongly affected by the mass-flow coefficient. If the mass-flow rate is sufficiently small, the trajectory of the leakage vortex becomes perpendicular to the axis of rotation, the leakage vortex interacts with the adjacent blade, and inlet tip recirculation is triggered. If the flow rate is further reduced, the leakage vortex vanishes and rotating stall is initiated in the diffuser. For larger clearances, stronger vortices are formed, stall is triggered at higher flow rates, and the overall compressor performance deteriorates.

Collaboration


Dive into the Reza S. Abhari's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. I. Kalfas

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge