Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rhona K Stuart is active.

Publication


Featured researches published by Rhona K Stuart.


Nature Genetics | 2007

Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome

Nathaniel D. Heintzman; Rhona K Stuart; Gary C. Hon; Yutao Fu; Christina W. Ching; R. David Hawkins; Leah O. Barrera; Sara Van Calcar; Chunxu Qu; Keith A. Ching; Wei Wang; Zhiping Weng; Roland D. Green; Gregory E. Crawford; Bing Ren

Eukaryotic gene transcription is accompanied by acetylation and methylation of nucleosomes near promoters, but the locations and roles of histone modifications elsewhere in the genome remain unclear. We determined the chromatin modification states in high resolution along 30 Mb of the human genome and found that active promoters are marked by trimethylation of Lys4 of histone H3 (H3K4), whereas enhancers are marked by monomethylation, but not trimethylation, of H3K4. We developed computational algorithms using these distinct chromatin signatures to identify new regulatory elements, predicting over 200 promoters and 400 enhancers within the 30-Mb region. This approach accurately predicted the location and function of independently identified regulatory elements with high sensitivity and specificity and uncovered a novel functional enhancer for the carnitine transporter SLC22A5 (OCTN2). Our results give insight into the connections between chromatin modifications and transcriptional regulatory activity and provide a new tool for the functional annotation of the human genome.


Nature | 2009

Histone modifications at human enhancers reflect global cell-type-specific gene expression

Nathaniel D. Heintzman; Gary C. Hon; R. David Hawkins; Pouya Kheradpour; Alexander Stark; Lindsey F. Harp; Zhen Ye; Leonard K. Lee; Rhona K Stuart; Christina W. Ching; Keith A. Ching; Jessica Antosiewicz-Bourget; Hui Liu; Xinmin Zhang; Roland D. Green; Victor Lobanenkov; Ron Stewart; James A. Thomson; Gregory E. Crawford; Manolis Kellis; Bing Ren

The human body is composed of diverse cell types with distinct functions. Although it is known that lineage specification depends on cell-specific gene expression, which in turn is driven by promoters, enhancers, insulators and other cis-regulatory DNA sequences for each gene, the relative roles of these regulatory elements in this process are not clear. We have previously developed a chromatin-immunoprecipitation-based microarray method (ChIP-chip) to locate promoters, enhancers and insulators in the human genome. Here we use the same approach to identify these elements in multiple cell types and investigate their roles in cell-type-specific gene expression. We observed that the chromatin state at promoters and CTCF-binding at insulators is largely invariant across diverse cell types. In contrast, enhancers are marked with highly cell-type-specific histone modification patterns, strongly correlate to cell-type-specific gene expression programs on a global scale, and are functionally active in a cell-type-specific manner. Our results define over 55,000 potential transcriptional enhancers in the human genome, significantly expanding the current catalogue of human enhancers and highlighting the role of these elements in cell-type-specific gene expression.


Nature Methods | 2008

Genome-wide mapping of allele-specific protein- DNA interactions in human cells

Nathaniel D Maynard; Jing Chen; Rhona K Stuart; Jian-Bing Fan; Bing Ren

We describe a high-throughput method, named ChIP-SNP, for the identification of allele-specific protein-DNA interactions throughout the human genome. ChIP-SNP combines chromatin immunoprecipitation (ChIP) with whole-genome single nucleotide polymorphism (SNP) genotyping microarray analysis. We demonstrated that it can be used to accurately identify allele-specific binding of RNA polymerase II (RNAP) in the human fibroblast genome, uncovering imprinted genes and other allele-specific binding events. ChIP-SNP will facilitate the study of mechanisms of allele-specific gene expression.


Applied and Environmental Microbiology | 2009

Coastal Strains of Marine Synechococcus Species Exhibit Increased Tolerance to Copper Shock and a Distinctive Transcriptional Response Relative to Those of Open-Ocean Strains

Rhona K Stuart; Chris L. Dupont; D. Aaron Johnson; Ian T. Paulsen; Brian Palenik

ABSTRACT Copper appears to be influencing the distribution and abundance of phytoplankton in marine environments, and cyanobacteria are thought to be the most sensitive of the phytoplankton groups to copper toxicity. By using growth assays of phylogenetically divergent clades, we found that coastal strains of marine Synechococcus species were more tolerant to copper shock than open-ocean strains. The global transcriptional response to two levels of copper shock were determined for both a coastal strain and an open-ocean strain of marine Synechococcus species using whole-genome expression microarrays. Both strains showed an osmoregulatory-like response, perhaps as a result of increasing membrane permeability. This could have implications for marine carbon cycling if copper shock leads to dissolved organic carbon leakage in Synechococcus species. The two strains additionally showed a common reduction in levels of photosynthesis-related gene transcripts. Contrastingly, the open-ocean strain showed a general stress response, whereas the coastal strain exhibited a more specifically oxidative or heavy-metal acclimation response that may be conferring tolerance. In addition, the coastal strain activated more regulatory elements and transporters, many of which are not conserved in other marine Synechococcus strains and may have been acquired by horizontal gene transfer. Thus, tolerance to copper shock in some marine Synechococcus strains may in part be a result of a generally increased ability to sense and respond in a more stress-specific manner.


The ISME Journal | 2016

Cyanobacterial reuse of extracellular organic carbon in microbial mats

Rhona K Stuart; Xavier Mayali; Jackson Z. Lee; R. Craig Everroad; Mona Hwang; Brad M. Bebout; Peter K. Weber; Jennifer Pett-Ridge; Michael P. Thelen

Cyanobacterial organic matter excretion is crucial to carbon cycling in many microbial communities, but the nature and bioavailability of this C depend on unknown physiological functions. Cyanobacteria-dominated hypersaline laminated mats are a useful model ecosystem for the study of C flow in complex communities, as they use photosynthesis to sustain a more or less closed system. Although such mats have a large C reservoir in the extracellular polymeric substances (EPSs), the production and degradation of organic carbon is not well defined. To identify extracellular processes in cyanobacterial mats, we examined mats collected from Elkhorn Slough (ES) at Monterey Bay, California, for glycosyl and protein composition of the EPS. We found a prevalence of simple glucose polysaccharides containing either α or β (1,4) linkages, indicating distinct sources of glucose with differing enzymatic accessibility. Using proteomics, we identified cyanobacterial extracellular enzymes, and also detected activities that indicate a capacity for EPS degradation. In a less complex system, we characterized the EPS of a cyanobacterial isolate from ES, ESFC-1, and found the extracellular composition of biofilms produced by this unicyanobacterial culture were similar to that of natural mats. By tracing isotopically labeled EPS into single cells of ESFC-1, we demonstrated rapid incorporation of extracellular-derived carbon. Taken together, these results indicate cyanobacteria reuse excess organic carbon, constituting a dynamic pool of extracellular resources in these mats.


The ISME Journal | 2013

Genomic island genes in a coastal marine Synechococcus strain confer enhanced tolerance to copper and oxidative stress

Rhona K Stuart; Bianca Brahamsha; Kayla Busby; Brian Palenik

Highly variable regions called genomic islands are found in the genomes of marine picocyanobacteria, and have been predicted to be involved in niche adaptation and the ecological success of these microbes. These picocyanobacteria are typically highly sensitive to copper stress and thus, increased copper tolerance could confer a selective advantage under some conditions seen in the marine environment. Through targeted gene inactivation of genomic island genes that were known to be upregulated in response to copper stress in Synechococcus sp. strain CC9311, we found two genes (sync_1495 and sync_1217) conferred tolerance to both methyl viologen and copper stress in culture. The prevalence of one gene, sync_1495, was then investigated in natural samples, and had a predictable temporal variability in abundance at a coastal monitoring site with higher abundance in winter months. Together, this shows that genomic island genes can confer an adaptive advantage to specific stresses in marine Synechococcus, and may help structure their population diversity.


The ISME Journal | 2014

A microarray for assessing transcription from pelagic marine microbial taxa

Irina N. Shilova; Julie Robidart; H. James Tripp; Kendra A. Turk-Kubo; Boris Wawrik; Anton F. Post; Anne W. Thompson; Bess B. Ward; James T. Hollibaugh; Andrew D. Millard; Martin Ostrowski; David J. Scanlan; Ryan W. Paerl; Rhona K Stuart; Jonathan P. Zehr

Metagenomic approaches have revealed unprecedented genetic diversity within microbial communities across vast expanses of the world’s oceans. Linking this genetic diversity with key metabolic and cellular activities of microbial assemblages is a fundamental challenge. Here we report on a collaborative effort to design MicroTOOLs (Microbiological Targets for Ocean Observing Laboratories), a high-density oligonucleotide microarray that targets functional genes of diverse taxa in pelagic and coastal marine microbial communities. MicroTOOLs integrates nucleotide sequence information from disparate data types: genomes, PCR-amplicons, metagenomes, and metatranscriptomes. It targets 19 400 unique sequences over 145 different genes that are relevant to stress responses and microbial metabolism across the three domains of life and viruses. MicroTOOLs was used in a proof-of-concept experiment that compared the functional responses of microbial communities following Fe and P enrichments of surface water samples from the North Pacific Subtropical Gyre. We detected transcription of 68% of the gene targets across major taxonomic groups, and the pattern of transcription indicated relief from Fe limitation and transition to N limitation in some taxa. Prochlorococcus (eHLI), Synechococcus (sub-cluster 5.3) and Alphaproteobacteria SAR11 clade (HIMB59) showed the strongest responses to the Fe enrichment. In addition, members of uncharacterized lineages also responded. The MicroTOOLs microarray provides a robust tool for comprehensive characterization of major functional groups of microbes in the open ocean, and the design can be easily amended for specific environments and research questions.


Frontiers in Microbiology | 2013

Impact of DNA damaging agents on genome-wide transcriptional profiles in two marine Synechococcus species

Sasha G. Tetu; Daniel A. Johnson; Deepa Varkey; Katherine Phillippy; Rhona K Stuart; Chris L. Dupont; Karl A. Hassan; Brian Palenik; Ian T. Paulsen

Marine microorganisms, particularly those residing in coastal areas, may come in contact with any number of chemicals of environmental or xenobiotic origin. The sensitivity and response of marine cyanobacteria to such chemicals is, at present, poorly understood. We have looked at the transcriptional response of well characterized Synechococcus open ocean (WH8102) and coastal (CC9311) isolates to two DNA damaging agents, mitomycin C and ethidium bromide, using whole-genome expression microarrays. The coastal strain showed differential regulation of a larger proportion of its genome following “shock” treatment with each agent. Many of the orthologous genes in these strains, including those encoding sensor kinases, showed different transcriptional responses, with the CC9311 genes more likely to show significant changes in both treatments. While the overall response of each strain was considerably different, there were distinct transcriptional responses common to both strains observed for each DNA damaging agent, linked to the mode of action of each chemical. In both CC9311 and WH8102 there was evidence of SOS response induction under mitomycin C treatment, with genes recA, lexA and umuC significantly upregulated in this experiment but not under ethidium bromide treatment. Conversely, ethidium bromide treatment tended to result in upregulation of the DNA-directed RNA polymerase genes, not observed following mitomycin C treatment. Interestingly, a large number of genes residing on putative genomic island regions of each genome also showed significant upregulation under one or both chemical treatments.


BMC Genomics | 2010

Computational prediction of the osmoregulation network in Synechococcus sp. WH8102.

Xizeng Mao; Victor Olman; Rhona K Stuart; Ian T. Paulsen; Brian Palenik; Ying Xu

BackgroundOsmotic stress is caused by sudden changes in the impermeable solute concentration around a cell, which induces instantaneous water flow in or out of the cell to balance the concentration. Very little is known about the detailed response mechanism to osmotic stress in marine Synechococcus, one of the major oxygenic phototrophic cyanobacterial genera that contribute greatly to the global CO2 fixation.ResultsWe present here a computational study of the osmoregulation network in response to hyperosmotic stress of Synechococcus sp strain WH8102 using comparative genome analyses and computational prediction. In this study, we identified the key transporters, synthetases, signal sensor proteins and transcriptional regulator proteins, and found experimentally that of these proteins, 15 genes showed significantly changed expression levels under a mild hyperosmotic stress.ConclusionsFrom the predicted network model, we have made a number of interesting observations about WH8102. Specifically, we found that (i) the organism likely uses glycine betaine as the major osmolyte, and others such as glucosylglycerol, glucosylglycerate, trehalose, sucrose and arginine as the minor osmolytes, making it efficient and adaptable to its changing environment; and (ii) σ38, one of the seven types of σ factors, probably serves as a global regulator coordinating the osmoregulation network and the other relevant networks.


The ISME Journal | 2017

Feathermoss and epiphytic Nostoc cooperate differently: expanding the spectrum of plant–cyanobacteria symbiosis

Denis Warshan; Josh L. Espinoza; Rhona K Stuart; R. Alexander Richter; Sea-Yong Kim; Nicole Shapiro; Tanja Woyke; Nikos C. Kyrpides; Kerrie Barry; Vasanth Singan; Erika Lindquist; Charles Ansong; Samuel O. Purvine; Heather M. Brewer; Philip D. Weyman; Christopher L. Dupont; Ulla Rasmussen

Dinitrogen (N2)-fixation by cyanobacteria in symbiosis with feathermosses is the primary pathway of biological nitrogen (N) input into boreal forests. Despite its significance, little is known about the cyanobacterial gene repertoire and regulatory rewiring needed for the establishment and maintenance of the symbiosis. To determine gene acquisitions and regulatory changes allowing cyanobacteria to form and maintain this symbiosis, we compared genomically closely related symbiotic-competent and -incompetent Nostoc strains using a proteogenomics approach and an experimental set up allowing for controlled chemical and physical contact between partners. Thirty-two gene families were found only in the genomes of symbiotic strains, including some never before associated with cyanobacterial symbiosis. We identified conserved orthologs that were differentially expressed in symbiotic strains, including protein families involved in chemotaxis and motility, NO regulation, sulfate/phosphate transport, and glycosyl-modifying and oxidative stress-mediating exoenzymes. The physical moss–cyanobacteria epiphytic symbiosis is distinct from other cyanobacteria–plant symbioses, with Nostoc retaining motility, and lacking modulation of N2-fixation, photosynthesis, GS-GOGAT cycle and heterocyst formation. The results expand our knowledge base of plant–cyanobacterial symbioses, provide a model of information and material exchange in this ecologically significant symbiosis, and suggest new currencies, namely nitric oxide and aliphatic sulfonates, may be involved in establishing and maintaining the cyanobacteria–feathermoss symbiosis.

Collaboration


Dive into the Rhona K Stuart's collaboration.

Top Co-Authors

Avatar

Brian Palenik

University of California

View shared research outputs
Top Co-Authors

Avatar

Bing Ren

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keith A. Ching

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary C. Hon

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

R. David Hawkins

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge