Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roland D. Green is active.

Publication


Featured researches published by Roland D. Green.


Nature Genetics | 2007

Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome

Nathaniel D. Heintzman; Rhona K Stuart; Gary C. Hon; Yutao Fu; Christina W. Ching; R. David Hawkins; Leah O. Barrera; Sara Van Calcar; Chunxu Qu; Keith A. Ching; Wei Wang; Zhiping Weng; Roland D. Green; Gregory E. Crawford; Bing Ren

Eukaryotic gene transcription is accompanied by acetylation and methylation of nucleosomes near promoters, but the locations and roles of histone modifications elsewhere in the genome remain unclear. We determined the chromatin modification states in high resolution along 30 Mb of the human genome and found that active promoters are marked by trimethylation of Lys4 of histone H3 (H3K4), whereas enhancers are marked by monomethylation, but not trimethylation, of H3K4. We developed computational algorithms using these distinct chromatin signatures to identify new regulatory elements, predicting over 200 promoters and 400 enhancers within the 30-Mb region. This approach accurately predicted the location and function of independently identified regulatory elements with high sensitivity and specificity and uncovered a novel functional enhancer for the carnitine transporter SLC22A5 (OCTN2). Our results give insight into the connections between chromatin modifications and transcriptional regulatory activity and provide a new tool for the functional annotation of the human genome.


Nature | 2009

Histone modifications at human enhancers reflect global cell-type-specific gene expression

Nathaniel D. Heintzman; Gary C. Hon; R. David Hawkins; Pouya Kheradpour; Alexander Stark; Lindsey F. Harp; Zhen Ye; Leonard K. Lee; Rhona K Stuart; Christina W. Ching; Keith A. Ching; Jessica Antosiewicz-Bourget; Hui Liu; Xinmin Zhang; Roland D. Green; Victor Lobanenkov; Ron Stewart; James A. Thomson; Gregory E. Crawford; Manolis Kellis; Bing Ren

The human body is composed of diverse cell types with distinct functions. Although it is known that lineage specification depends on cell-specific gene expression, which in turn is driven by promoters, enhancers, insulators and other cis-regulatory DNA sequences for each gene, the relative roles of these regulatory elements in this process are not clear. We have previously developed a chromatin-immunoprecipitation-based microarray method (ChIP-chip) to locate promoters, enhancers and insulators in the human genome. Here we use the same approach to identify these elements in multiple cell types and investigate their roles in cell-type-specific gene expression. We observed that the chromatin state at promoters and CTCF-binding at insulators is largely invariant across diverse cell types. In contrast, enhancers are marked with highly cell-type-specific histone modification patterns, strongly correlate to cell-type-specific gene expression programs on a global scale, and are functionally active in a cell-type-specific manner. Our results define over 55,000 potential transcriptional enhancers in the human genome, significantly expanding the current catalogue of human enhancers and highlighting the role of these elements in cell-type-specific gene expression.


Nature | 2005

A high-resolution map of active promoters in the human genome

Tae Hoon Kim; Leah O. Barrera; Ming Zheng; Chunxu Qu; Michael A. Singer; Todd Richmond; Ying Nian Wu; Roland D. Green; Bing Ren

In eukaryotic cells, transcription of every protein-coding gene begins with the assembly of an RNA polymerase II preinitiation complex (PIC) on the promoter. The promoters, in conjunction with enhancers, silencers and insulators, define the combinatorial codes that specify gene expression patterns. Our ability to analyse the control logic encoded in the human genome is currently limited by a lack of accurate information regarding the promoters for most genes. Here we describe a genome-wide map of active promoters in human fibroblast cells, determined by experimentally locating the sites of PIC binding throughout the human genome. This map defines 10,567 active promoters corresponding to 6,763 known genes and at least 1,196 un-annotated transcriptional units. Features of the map suggest extensive use of multiple promoters by the human genes and widespread clustering of active promoters in the genome. In addition, examination of the genome-wide expression profile reveals four general classes of promoters that define the transcriptome of the cell. These results provide a global view of the functional relationships among transcriptional machinery, chromatin structure and gene expression in human cells.


Cell | 2007

Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome

Tae Hoon Kim; Ziedulla Abdullaev; Andrew D. Smith; Keith A. Ching; Dmitri Loukinov; Roland D. Green; Michael Q. Zhang; Victor Lobanenkov; Bing Ren

Insulator elements affect gene expression by preventing the spread of heterochromatin and restricting transcriptional enhancers from activation of unrelated promoters. In vertebrates, insulators function requires association with the CCCTC-binding factor (CTCF), a protein that recognizes long and diverse nucleotide sequences. While insulators are critical in gene regulation, only a few have been reported. Here, we describe 13,804 CTCF-binding sites in potential insulators of the human genome, discovered experimentally in primary human fibroblasts. Most of these sequences are located far from the transcriptional start sites, with their distribution strongly correlated with genes. The majority of them fit to a consensus motif highly conserved and suitable for predicting possible insulators driven by CTCF in other vertebrate genomes. In addition, CTCF localization is largely invariant across different cell types. Our results provide a resource for investigating insulator function and possible other general and evolutionarily conserved activities of CTCF sites.


The Plant Cell | 1998

Gibberellins Promote Flowering of Arabidopsis by Activating the LEAFY Promoter

Miguel A. Blázquez; Roland D. Green; Ove Nilsson; Michael R. Sussman; Detlef Weigel

The gibberellin class of plant hormones has been implicated in the control of flowering in several species. In Arabidopsis, severe reduction of endogenous gibberellins delays flowering in long days and prevents flowering in short days. We have investigated how the differential effects of gibberellins on flowering correlate with expression of LEAFY, a floral meristem identity gene. We have found that the failure of gibberellin-deficient ga1-3 mutants to flower in short days was paralleled by the absence of LEAFY promoter induction. A causal connection between these two events was confirmed by the ability of a constitutively expressed LEAFY transgene to restore flowering to ga1-3 mutants in short days. In contrast to short days, impairment of gibberellin biosynthesis caused merely a reduction of LEAFY expression when plants were grown in long days or with sucrose in the dark. As a first step toward identifying other small molecules that might regulate flowering, we have developed a rapid in vitro assay for LEAFY promoter activity.


Genes, Chromosomes and Cancer | 2005

Analysis of chromosome breakpoints in neuroblastoma at sub‐kilobase resolution using fine‐tiling oligonucleotide array CGH

Rebecca R. Selzer; Todd Richmond; Nathan J. Pofahl; Roland D. Green; Peggy S. Eis; Prakash Nair; Arthur R. Brothman; Raymond L. Stallings

Understanding the genes and genetic pathways targeted by recurrent chromosomal imbalances in malignancy, along with the molecular mechanisms that generate the imbalances, are important problems in cancer biology. In this report, we demonstrate that oligonucleotide array CGH (oaCGH) analysis can routinely map chromosomal imbalance breakpoints at exon‐level resolution, including imbalances that are single copy number genomic alterations. Different tiling‐path array designs were used in this study: a whole‐genome array with a 6‐kb median probe spacing and fine‐tiling arrays for selected genomic regions with either 50‐ or 140‐bp median probe spacing. In both array formats, oligonucleotide probes were of isothermal design and were tiled through genic and inter‐genic regions. Whole‐genome oaCGH analysis of two neuroblastoma cell lines and three primary tumors led to the identification of 58 chromosomal breakpoints that generated 45 large‐scale partial chromosomal imbalances (>2 Mb). An unexpectedly high proportion (34%) of these breakpoint intervals mapped to regions containing segmental duplications. In addition, 88 smaller‐sized regions (<2 Mb) of imbalance were detected, the majority of which mapped to segmentally duplicated regions and may reflect constitutional copy number polymorphisms. The chromosomal breakpoints for 12 recurrent abnormalities exhibited in neuroblastoma tumors and cell lines, including MYCN amplicon boundaries, loss of 3p, loss of 11q, and gain of 17q, could be mapped to intervals ranging from 50 bp to 10 kb in size using high‐density fine‐tiling oligonucleotide microarrays. Fine‐tiling oaCGH analysis provides an unprecedented level of resolution, allowing detailed mapping of recurrent unbalanced chromosomal abnormalities. Supplementary material for this article can be found on the Genes, Chromosomes, and Cancer website at http://www.interscience.wiley.com/jpages/1045‐2257/suppmat/index.html.


Nature | 2007

Arginine methylation at histone H3R2 controls deposition of H3K4 trimethylation.

Antonis Kirmizis; Helena Santos-Rosa; Christopher J. Penkett; Michael A. Singer; Michiel Vermeulen; Matthias Mann; Jürg Bähler; Roland D. Green; Tony Kouzarides

Modifications on histones control important biological processes through their effects on chromatin structure. Methylation at lysine 4 on histone H3 (H3K4) is found at the 5′ end of active genes and contributes to transcriptional activation by recruiting chromatin-remodelling enzymes. An adjacent arginine residue (H3R2) is also known to be asymmetrically dimethylated (H3R2me2a) in mammalian cells, but its location within genes and its function in transcription are unknown. Here we show that H3R2 is also methylated in budding yeast (Saccharomyces cerevisiae), and by using an antibody specific for H3R2me2a in a chromatin immunoprecipitation-on-chip analysis we determine the distribution of this modification on the entire yeast genome. We find that H3R2me2a is enriched throughout all heterochromatic loci and inactive euchromatic genes and is present at the 3′ end of moderately transcribed genes. In all cases the pattern of H3R2 methylation is mutually exclusive with the trimethyl form of H3K4 (H3K4me3). We show that methylation at H3R2 abrogates the trimethylation of H3K4 by the Set1 methyltransferase. The specific effect on H3K4me3 results from the occlusion of Spp1, a Set1 methyltransferase subunit necessary for trimethylation. Thus, the inability of Spp1 to recognize H3 methylated at R2 prevents Set1 from trimethylating H3K4. These results provide the first mechanistic insight into the function of arginine methylation on chromatin.


Nature Methods | 2006

DNase-chip: a high-resolution method to identify DNase I hypersensitive sites using tiled microarrays

Gregory E. Crawford; Sean Davis; Peter C. Scacheri; Gabriel Renaud; Mohamad J Halawi; Michael R. Erdos; Roland D. Green; Paul S. Meltzer; Tyra G. Wolfsberg; Francis S. Collins

Mapping DNase I hypersensitive sites is an accurate method of identifying the location of gene regulatory elements, including promoters, enhancers, silencers and locus control regions. Although Southern blots are the traditional method of identifying DNase I hypersensitive sites, the conventional manual method is not readily scalable to studying large chromosomal regions, much less the entire genome. Here we describe DNase-chip, an approach that can rapidly identify DNase I hypersensitive sites for any region of interest, or potentially for the entire genome, by using tiled microarrays. We used DNase-chip to identify DNase I hypersensitive sites accurately from a representative 1% of the human genome in both primary and immortalized cell types. We found that although most DNase I hypersensitive sites were present in both cell types studied, some of them were cell-type specific. This method can be applied globally or in a targeted fashion to any tissue from any species with a sequenced genome.


BioTechniques | 2006

Comparison of sample preparation methods for ChIP-chip assays

Henriette O'Geen; Charles M. Nicolet; Kim Blahnik; Roland D. Green; Peggy J. Farnham

A single chromatin immunoprecipitation (ChIP) sample does not provide enough DNA for hybridization to a genomic tiling array. A commonly used technique for amplifying the DNA obtained from ChIP assays is ligation-mediated PCR (LM-PCR). However; using this amplification method, we could not identify Oct4 binding sites on genomic tiling arrays representing 1% of the human genome (ENCODE arrays). In contrast, hybridization of a pool of 10 ChIP samples to the arrays produced reproducible binding patterns and low background signals. However the pooling method would greatly increase the number of ChIP reactions needed to analyze the entire human genome. Therefore, we have adapted the GenomePlex whole genome amplification (WGA) method for use in ChIP-chip assays; detailed ChIP and amplification protocols used for these analyses are provided as supplementary material. When applied to ENCODE arrays, the products prepared using this new method resulted in an Oct4 binding pattern similar to that from the pooled Oct4 ChIP samples. Importantly, the signal-to-noise ratio using the GenomePlex WGA method is superior to the LM-PCR amplification method.


Nucleic Acids Research | 2009

High-resolution genome-wide cytosine methylation profiling with simultaneous copy number analysis and optimization for limited cell numbers

Mayumi Oda; Jacob L. Glass; Reid F. Thompson; Yongkai Mo; Emmanuel N. Olivier; Maria E. Figueroa; Rebecca R. Selzer; Todd Richmond; Xinmin Zhang; Luke O. Dannenberg; Roland D. Green; Ari Melnick; Eli Hatchwell; Eric E. Bouhassira; Amit Verma; Masako Suzuki; John M. Greally

Many genome-wide assays involve the generation of a subset (or representation) of the genome following restriction enzyme digestion. The use of enzymes sensitive to cytosine methylation allows high-throughput analysis of this epigenetic regulatory process. We show that the use of a dual-adapter approach allows us to generate genomic representations that includes fragments of <200 bp in size, previously not possible when using the standard approach of using a single adapter. By expanding the representation to smaller fragments using HpaII or MspI, we increase the representation by these isoschizomers to more than 1.32 million loci in the human genome, representing 98.5% of CpG islands and 91.1% of refSeq promoters. This advance allows the development of a new, high-resolution version of our HpaII-tiny fragment Enrichment by Ligation-mediated PCR (HELP) assay to study cytosine methylation. We also show that the MspI representation generates information about copy-number variation, that the assay can be used on as little as 10 ng of DNA and that massively parallel sequencing can be used as an alternative to microarrays to read the output of the assay, making this a powerful discovery platform for studies of genomic and epigenomic abnormalities.

Collaboration


Dive into the Roland D. Green's collaboration.

Top Co-Authors

Avatar

Peggy J. Farnham

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bing Ren

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Keith A. Ching

University of California

View shared research outputs
Top Co-Authors

Avatar

Mark Bieda

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Victor X. Jin

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge