Rhys D. Brady
La Trobe University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rhys D. Brady.
Journal of Cerebral Blood Flow and Metabolism | 2015
Sandy R. Shultz; Mujun Sun; David K. Wright; Rhys D. Brady; Shijie Liu; Sinead Beynon; Shannon F Schmidt; Andrew H. Kaye; John A. Hamilton; Terence J. O'Brien; Brian L. Grills; Stuart J. McDonald
Multitrauma is a common medical problem worldwide, and often involves concurrent traumatic brain injury (TBI) and bone fracture. Despite the high incidence of combined TBI and fracture, preclinical TBI research commonly employs independent injury models that fail to incorporate the pathophysiologic interactions occurring in multitrauma. Here, we developed a novel mouse model of multitrauma, and investigated whether bone fracture worsened TBI outcomes. Male mice were assigned into four groups: sham-TBI +sham-fracture (SHAM); sham-TBI+fracture (FX); TBI+sham-fracture (TBI); and TBI+fracture (MULTI). The injury methods included a closed-skull weight-drop TBI model and a closed tibial fracture. After a 35-day recovery, mice underwent behavioral testing and magnetic resonance imaging (MRI). MULTI mice displayed abnormal behaviors in the open-field compared with all other groups. On MRI, MULTI mice had enlarged ventricles and diffusion abnormalities compared with all other groups. These changes occurred in the presence of heightened neuroinflammation in MULTI mice at 24 hours and 35 days after injury, and elevated edema and blood–brain barrier disruption at 24 hours after injury. Together, these findings indicate that tibial fracture worsens TBI outcomes, and that exacerbated neuroinflammation may be an important factor that contributes to these effects, which warrants further investigation.
Cerebral Cortex | 2016
David K. Wright; Shijie Liu; Chris van der Poel; Stuart J. McDonald; Rhys D. Brady; Lily Taylor; Li Yang; Andrew J. Gardner; Roger J. Ordidge; Terence J. O'Brien; Leigh A. Johnston; Sandy R. Shultz
Traumatic brain injury (TBI) has been suggested to increase the risk of amyotrophic lateral sclerosis (ALS). However, this link remains controversial and as such, here we performed experimental moderate TBI in rats and assessed for the presence of ALS-like pathological and functional abnormalities at both 1 and 12 weeks post-injury. Serial in-vivo magnetic resonance imaging (MRI) demonstrated that rats given a TBI had progressive atrophy of the motor cortices and degeneration of the corticospinal tracts compared with sham-injured rats. Immunofluorescence analyses revealed a progressive reduction in neurons, as well as increased phosphorylated transactive response DNA-binding protein 43 (TDP-43) and cytoplasmic TDP-43, in the motor cortex of rats given a TBI. Rats given a TBI also had fewer spinal cord motor neurons, increased expression of muscle atrophy markers, and altered muscle fiber contractile properties compared with sham-injured rats at 12 weeks, but not 1 week, post-injury. All of these changes occurred in the presence of persisting motor deficits. These findings resemble some of the pathological and functional abnormalities common in ALS and support the notion that TBI can result in a progressive neurodegenerative disease process pathologically bearing similarities to a motor neuron disease.
Bone | 2017
Rhys D. Brady; Sandy R. Shultz; Stuart J. McDonald; Terence J. O'Brien
Neurological heterotopic ossification (NHO) involves the formation of bone in soft tissue following a neurological condition, of which the most common are brain and spinal cord injuries. NHO often forms around the hip, knee and shoulder joints, causing severe pain and joint deformation which is associated with significant morbidity and reduced quality of life. The cellular and molecular events that initiate NHO have been the focus of an increasing number of human and animal studies over the past decade, with this work largely driven by the need to unearth potential therapeutic interventions to prevent the formation of NHO. This review provides an overview of the present understanding of NHO pathogenesis and pathobiology, current treatments, novel therapeutic targets, potential biomarkers and future directions.
Journal of Orthopaedic Research | 2014
Rhys D. Brady; Brian L. Grills; Johannes A. Schuijers; Alex R. Ward; Brett A. Tonkin; Nicole C. Walsh; Stuart J. McDonald
Thymosin β4 (Tβ4) is a regenerative peptide that we hypothesized would promote healing of fractured bone. Mice received a bilateral fibular osteotomy and were given i.p. injections of either Tβ4 (6 mg/kg) or saline. Calluses from saline‐ and Tβ4‐treated mice were analyzed for: (1) biomechanical properties and (2) composition using micro‐computed tomography (µCT) and histomorphometry. Biomechanical analysis showed that Tβ4‐treated calluses had a 41% increase in peak force to failure (p < 0.01) and were approximately 25% stiffer (p < 0.05) than saline‐treated controls. µCT analysis at 21 days post‐fracture showed that the fractional volume of new mineralized tissue and new highly mineralized tissue were respectively 18% and 26% greater in calluses from Tβ4‐treated mice compared to controls (p < 0.01; p < 0.05, respectively). Histomorphometry complemented the µCT data; at 21 days post‐fracture, Tβ4‐treated calluses were almost 23% smaller (p < 0.05), had nearly 47% less old cortical bone (p < 0.05) and had a 31% increase in new trabecular bone area/total callus area fraction compared with controls (p < 0.05). Our finding of enhanced biomechanical properties of fractures in mice treated with Tβ4 provides novel evidence of the therapeutic potential of this peptide for treating bone fractures.
Brain Behavior and Immunity | 2017
Mujun Sun; Rhys D. Brady; David K. Wright; Hyun Ah Kim; Shenpeng R. Zhang; Christopher G. Sobey; Maddison R. Johnstone; Terence J. O'Brien; Bridgette D. Semple; Stuart J. McDonald; Sandy R. Shultz
Traumatic brain injury (TBI) and long bone fracture are common in polytrauma. This injury combination in mice results in elevated levels of the pro-inflammatory cytokine interleukin-1β (IL-1β) and exacerbated neuropathology when compared to isolated-TBI. Here we examined the effect of treatment with an IL-1 receptor antagonist (IL-1ra) in mice given a TBI and a concomitant tibial fracture (i.e., polytrauma). Adult male C57BL/6 mice were given sham-injuries or polytrauma and treated with saline-vehicle or IL-1ra (100mg/kg). Treatments were subcutaneously injected at 1, 6, and 24h, and then once daily for one week post-injury. 7-8 mice/group were euthanized at 48h post-injury. 12-16 mice/group underwent behavioral testing at 12weeks post-injury and MRI at 14weeks post-injury before being euthanized at 16weeks post-injury. At 48h post-injury, markers for activated microglia and astrocytes, as well as neutrophils and edema, were decreased in polytrauma mice treated with IL-1ra compared to polytrauma mice treated with vehicle. At 14weeks post-injury, MRI analysis demonstrated that IL-1ra treatment after polytrauma reduced volumetric loss in the injured cortex and mitigated track-weighted MRI markers for axonal injury. As IL-1ra (Anakinra) is approved for human use, it may represent a promising therapy in polytrauma cases involving TBI and fracture.
Scientific Reports | 2016
Rhys D. Brady; Brian L. Grills; Jarrod E Church; Nicole C. Walsh; Aaron Campbell. McDonald; Denes V. Agoston; Mujun Sun; Terence J. O’Brien; Sandy R. Shultz; Stuart J. McDonald
Concomitant traumatic brain injury (TBI) and long bone fracture are commonly observed in multitrauma and polytrauma. Despite clinical observations of enhanced bone healing in patients with TBI, the relationship between TBI and fracture healing remains poorly understood, with clinical data limited by the presence of several confounding variables. Here we developed a novel trauma model featuring closed-skull weight-drop TBI and concomitant tibial fracture in order to investigate the effect of TBI on fracture healing. Male mice were assigned into Fracture + Sham TBI (FX) or Fracture + TBI (MULTI) groups and sacrificed at 21 and 35 days post-injury for analysis of healing fractures by micro computed tomography (μCT) and histomorphometry. μCT analysis revealed calluses from MULTI mice had a greater bone and total tissue volume, and displayed higher mean polar moment of inertia when compared to calluses from FX mice at 21 days post-injury. Histomorphometric results demonstrated an increased amount of trabecular bone in MULTI calluses at 21 days post-injury. These findings indicate that closed head TBI results in calluses that are larger in size and have an increased bone volume, which is consistent with the notion that TBI induces the formation of a more robust callus.
Brain Injury | 2018
Maddison R. Johnstone; Mujun Sun; Caroline J Taylor; Rhys D. Brady; Brian L. Grills; Jarrod E Church; Sandy R. Shultz; Stuart J. McDonald
ABSTRACT Objectives: There is evidence that treatment with nerve growth factor (NGF) may reduce neuroinflammation and apoptosis after a traumatic brain injury (TBI). NGF is thought to exert its effects via binding to either TrkA or p75 neurotrophin receptors. This study aimed to investigate the effects of a selective TrkA agonist, gambogic amide (GA), on TBI pathology and outcomes in mice following lateral fluid percussion injury. Methods: Male C57BL/6 mice were given either a TBI or sham injury, and then received subcutaneous injections of either 2 mg/kg of GA or vehicle at 1, 24, and 48 h post-injury. Following behavioural studies, mice were euthanized at 72 h post-injury for analysis of neuroinflammatory, apoptotic, and neurite outgrowth markers. Results: Behavioural testing revealed that GA did not mitigate motor deficits after TBI. TBI caused an increase in cortical and hippocampal expression of several markers of neuroinflammation and apoptosis compared to sham groups. GA treatment did not attenuate these increases in expression, possibly contributed to by our finding of TrkA receptor down-regulation post-TBI. Conclusions: These findings suggest that GA treatment may not be suitable for attenuating TBI pathology and improving outcomes.
Journal of Neurotrauma | 2018
Xin Lin Tan; Mujun Sun; Rhys D. Brady; Shijie Liu; Roxana M. Llanos; Steve N. S. Cheung; David K. Wright; Pablo M. Casillas-Espinosa; Maithili Sashindranath; Terence J. O'Brien; Stuart J. McDonald; Bradley J. Turner; Sandy R. Shultz
Initial studies have found some evidence for transactive response DNA-binding protein 43 (TDP-43) abnormalities after traumatic brain injury (TBI), and the presence of protein inclusions consisting of TDP-43 are a pathological hallmark of amyotrophic lateral sclerosis (ALS), a condition associated with TBI. However, no study has characterized changes in TDP-43 phosphorylation, mislocalization, and fragmentation (i.e., abnormalities linked to hallmark TDP-43 pathology) after TBI, and how these relate to functional outcomes. Further, how TBI affects an individual with a known predisposition to TDP-43 pathology is unknown. Therefore, this study examined the effects of TBI on TDP-43 post-translational processing, localization, and behavioral outcomes in wild-type (WT) mice and mutant TDP-43A315T mice (i.e., mice predisposed to TDP-43 pathology) at 24 h and 1 week after TBI. Post-mortem brain tissue from human patients with acute TBI was also examined. Western blots found that WT mice given TBI had increased TDP-43 phosphorylation, mislocalization, and fragmentation compared with sham-injured WT mice. The TDP-43A315T mice given a TBI had exacerbated TDP-43 abnormalities, worse cell death, and cognitive deficits compared with all other groups. In the human TBI patients, the only significant finding was increased nuclear accumulation of phosphorylated TDP-43 fragments. The discrepancy between the robust mouse findings and the largely non-significant human findings may be due to factors including heterogeneity in clinical TBI, the small group sizes, and temporal complexities with TDP-43 abnormalities. These findings indicate that TBI can induce a number of TDP-43 abnormalities that may contribute to the neurological consequences of TBI, though further research is still needed.
Frontiers in Neurology | 2018
Thomas J McColl; Rhys D. Brady; Sandy R. Shultz; Lauren Lovick; Kyria M. Webster; Mujun Sun; Stuart J. McDonald; Terence J. O'Brien; Bridgette D. Semple
Mild traumatic brain injuries (mTBI) are common during adolescence, and limited clinical evidence suggests that a younger age at first exposure to a mTBI may lead to worse long-term outcomes. In this study, we hypothesized that a mTBI during adolescence would predispose toward poorer neurobehavioral and neuropathological outcomes after a subsequent injury at adulthood. Mice received a mild weight drop injury (mTBI) at adolescence (postnatal day 35; P35) and/or at adulthood (P70). Mice were randomized to 6 groups: ‘sham’ (sham-surgery at P35 only); ‘P35’ (mTBI at P35 only); ‘P35 + sham’ (mTBI at P35 + sham at P70); ‘sham + P70’ (sham at P35 + mTBI at P70); ‘sham + sham’ (sham at both P35 and P70); or ‘P35 + P70’ (mTBI at both P35 and P70). Acute apnea and an extended righting reflex time confirmed a mTBI injury at P35 and/or P70. Cognitive, psychosocial, and sensorimotor function was assessed over 1-week post-injury. Injured groups performed similarly to sham controls across all tasks. Immunofluorescence staining at 1 week detected an increase in glial activation markers in Sham + P70 brains only. Strikingly, 63% of Sham + P70 mice exhibited a skull fracture at impact, compared to 13% of P35 + P70 mice. Micro computed tomography of parietal skull bones found that a mTBI at P35 resulted in increased bone volume and strength, which may account for the difference in fracture incidence. In summary, a single mTBI to the adolescent mouse brain did not exacerbate the cerebral effects of a subsequent mTBI in adulthood. However, the head impact at P35 induced significant changes in skull bone structure and integrity. These novel findings support future investigation into the consequences of mTBI on skull bone.
Cell Death and Disease | 2018
Stephen J. Goldie; Denny L. Cottle; Fiona H. Tan; Suraya Roslan; Seema Srivastava; Rhys D. Brady; Darren D. Partridge; Alana Auden; Ian Smyth; Stephen M. Jane; Sebastian Dworkin; Charbel Darido
Identifying soluble factors that influence epidermal integrity is critical for the development of preventative and therapeutic strategies for disorders such as ichthyosis, psoriasis, dermatitis and epidermal cancers. The transcription factor Grainyhead-like 3 (GRHL3) is essential for maintaining barrier integrity and preventing development of cutaneous squamous cell carcinoma (SCC); however, how loss of this factor, which in the skin is expressed exclusively within suprabasal epidermal layers triggers proliferation of basal keratinocytes, had thus far remained elusive. Our present study identifies thymus and activation-regulated chemokine (TARC) as a novel soluble chemokine mediator of keratinocyte proliferation following loss of GRHL3. Knockdown of GRHL3 in human keratinocytes showed that of 42 cytokines examined, TARC was the only significantly upregulated chemokine. Mouse skin lacking Grhl3 presented an inflammatory response with hallmarks of TARC activation, including heightened induction of blood clotting, increased infiltration of mast cells and pro-inflammatory T cells, increased expression of the pro-proliferative/pro-inflammatory markers CD3 and pSTAT3, and significantly elevated basal keratinocyte proliferation. Treatment of skin cultures lacking Grhl3 with the broad spectrum anti-inflammatory 5-aminosalicylic acid (5ASA) partially restored epidermal differentiation, indicating that abnormal keratinocyte proliferation/differentiation balance is a key driver of barrier dysfunction following loss of Grhl3, and providing a promising therapeutic avenue in the treatment of GRHL3-mediated epidermal disorders.