Sara Aurtenetxe
Complutense University of Madrid
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sara Aurtenetxe.
Psychology and Aging | 2013
Nathan Cashdollar; Keisuke Fukuda; Angelika Bocklage; Sara Aurtenetxe; Edward K. Vogel; Adam Gazzaley
Older adults are more vulnerable to a negative impact of irrelevant information on cognitive performance. We used a psychophysical approach to evaluate which aspects of distraction are altered in aging: susceptibility for attention to be captured by a distractor, or the timing of disengagement from processing a distractor. We found that younger and older adults were equally susceptible to a detrimental influence of attentional capture on target detection in the initial moments after distractor presentation, but older adults exhibited a longer time window for the negative effects of capture to resolve. As was recently shown in younger adults, the timing of disengagement from capture correlated with individual differences in visual working memory capacity in the older cohort. These results suggest that the larger impact by distraction on perceptual abilities in normal aging is not the result of a greater susceptibility to attentional capture by distraction, but rather the prolonged processing of distractors.
The Journal of Neuroscience | 2014
María Eugenia López; Ricardo Bruña; Sara Aurtenetxe; José Ángel Pineda-Pardo; Alberto Marcos; Juan Arrazola; Ana Isabel Reinoso; Pedro Montejo; Ricardo Bajo; Fernando Maestú
People with mild cognitive impairment (MCI) show a high risk to develop Alzheimers disease (AD; Petersen et al., 2001). Nonetheless, there is a lack of studies about how functional connectivity patterns may distinguish between progressive (pMCI) and stable (sMCI) MCI patients. To examine whether there were differences in functional connectivity between groups, MEG eyes-closed recordings from 30 sMCI and 19 pMCI subjects were compared. The average conversion time of pMCI was 1 year, so they were considered as fast converters. To this end, functional connectivity in different frequency bands was assessed with phase locking value in source space. Then the significant differences between both groups were correlated with neuropsychological scores and entorhinal, parahippocampal, and hippocampal volumes. Both groups did not differ in age, gender, or educational level. pMCI patients obtained lower scores in episodic and semantic memory and also in executive functioning. At the structural level, there were no differences in hippocampal volume, although some were found in left entorhinal volume between both groups. Additionally, pMCI patients exhibit a higher synchronization in the alpha band between the right anterior cingulate and temporo-occipital regions than sMCI subjects. This hypersynchronization was inversely correlated with cognitive performance, both hippocampal volumes, and left entorhinal volume. The increase in phase synchronization between the right anterior cingulate and temporo-occipital areas may be predictive of conversion from MCI to AD.
NeuroImage: Clinical | 2014
Pilar Garcés; José Ángel Pineda-Pardo; Leonides Canuet; Sara Aurtenetxe; María Eugenia López; Alberto Marcos; Miguel Yus; Marcos Llanero-Luque; Francisco del-Pozo; Miguel Sancho; Fernando Maestú
Over the past years, several studies on Mild Cognitive Impairment (MCI) and Alzheimers disease (AD) have reported Default Mode Network (DMN) deficits. This network is attracting increasing interest in the AD community, as it seems to play an important role in cognitive functioning and in beta amyloid deposition. Attention has been particularly drawn to how different DMN regions are connected using functional or structural connectivity. To this end, most studies have used functional Magnetic Resonance Imaging (fMRI), Positron Emission Tomography (PET) or Diffusion Tensor Imaging (DTI). In this study we evaluated (1) functional connectivity from resting state magnetoencephalography (MEG) and (2) structural connectivity from DTI in 26 MCI patients and 31 age-matched controls. Compared to controls, the DMN in the MCI group was functionally disrupted in the alpha band, while no differences were found for delta, theta, beta and gamma frequency bands. In addition, structural disconnection could be assessed through a decreased fractional anisotropy along tracts connecting different DMN regions. This suggests that the DMN functional and anatomical disconnection could represent a core feature of MCI.
Frontiers in Aging Neuroscience | 2013
Pilar Garcés; Raul Vicente; Michael Wibral; José Ángel Pineda-Pardo; María Eugenia López; Sara Aurtenetxe; Alberto Marcos; Maria Emiliana de Andrés; Miguel Yus; Miguel Sancho; Fernando Maestú; Alberto Fernández
The neurophysiological changes associated with Alzheimers Disease (AD) and Mild Cognitive Impairment (MCI) include an increase in low frequency activity, as measured with electroencephalography or magnetoencephalography (MEG). A relevant property of spectral measures is the alpha peak, which corresponds to the dominant alpha rhythm. Here we studied the spatial distribution of MEG resting state alpha peak frequency and amplitude values in a sample of 27 MCI patients and 24 age-matched healthy controls. Power spectra were reconstructed in source space with linearly constrained minimum variance beamformer. Then, 88 Regions of Interest (ROIs) were defined and an alpha peak per ROI and subject was identified. Statistical analyses were performed at every ROI, accounting for age, sex and educational level. Peak frequency was significantly decreased (p < 0.05) in MCIs in many posterior ROIs. The average peak frequency over all ROIs was 9.68 ± 0.71 Hz for controls and 9.05 ± 0.90 Hz for MCIs and the average normalized amplitude was (2.57 ± 0.59)·10−2 for controls and (2.70 ± 0.49)·10−2 for MCIs. Age and gender were also found to play a role in the alpha peak, since its frequency was higher in females than in males in posterior ROIs and correlated negatively with age in frontal ROIs. Furthermore, we examined the dependence of peak parameters with hippocampal volume, which is a commonly used marker of early structural AD-related damage. Peak frequency was positively correlated with hippocampal volume in many posterior ROIs. Overall, these findings indicate a pathological alpha slowing in MCI.
Brain | 2012
Ricardo Bajo; Nazareth P. Castellanos; Pablo Cuesta; Sara Aurtenetxe; Juan Garcia-Prieto; Pedro Gil-Gregorio; Francisco del-Pozo; Fernando Maestú
It is now widely accepted that Alzheimers disease is characterized by a functional disconnection between brain regions. The disease appears to begin up to decades prior to clinical diagnosis. Therefore, in the present study, we combined magnetoencephalography, a memory task, and functional connectivity analysis in mild cognitive impairment subjects in order to identify functional connectivity patterns that could characterize subjects who would eventually go on to develop the disease. We monitored 19 subjects and finally 5 of them developed Alzheimers disease. These progressive patients showed a differential profile of functional connectivity values compared with those patients who remained stable over time. Specifically there were higher synchronization values over the parieto-occipital region in α and β frequency bands. The involvement of this brain region in amyloid-β accumulation and its possible association with hyper-synchronization are also discussed.
Journal of Alzheimer's Disease | 2015
Pablo Cuesta; Pilar Garcés; Nazareth P. Castellanos; María Eugenia López; Sara Aurtenetxe; Ricardo Bajo; José Ángel Pineda-Pardo; Ricardo Bruña; Antonio García Marín; Marisa Delgado; Ana Barabash; Inés Ancín; José Antonio Cabranes; Alberto Fernández; Francisco del Pozo; Miguel Sancho; Alberto Marcos; Akinori Nakamura; Fernando Maestú
The apolipoprotein E (APOE) ε4 allele constitutes the major genetic risk for the development of late onset Alzheimers disease (AD). However, its influence on the neurodegeneration that occurs in early AD remains unresolved. In this study, the resting state magnetoencephalography(MEG) recordings were obtained from 27 aged healthy controls and 36 mild cognitive impairment (MCI) patients. All participants were divided into carriers and non-carriers of the ε4 allele. We have calculated the functional connectivity (FC) in the source space along brain regions estimated using the Harvard-Oxford atlas and in the classical bands. Then, a two way ANOVA analysis (diagnosis and APOE) was performed in each frequency band. The diagnosis effect consisted of a diminished FC within the high frequency bands in the MCI patients, affecting medial temporal and parietal regions. The APOE effect produced a decreased long range FC in delta band in ε4 carriers. Finally, the interaction effect showed that the FC pattern of the right frontal-temporal region could be reflecting a compensatory/disruption process within the ε4 allele carriers. Several of these results correlated with cognitive decline and neuropsychological performance. The present study characterizes how the APOE ε4 allele and MCI status affect the brains functional organization by analyzing the FC patterns in MEG resting state in the sources space. Therefore a combination of genetic, neuropsychological, and neurophysiological information might help to detect MCI patients at higher risk of conversion to AD and asymptomatic subjects at higher risk of developing a manifest cognitive deterioration.
Journal of Neuroscience Methods | 2014
Alicia Gonzalez-Moreno; Sara Aurtenetxe; Maria-Eugenia Lopez-Garcia; Francisco del Pozo; Fernando Maestú; Angel Nevado
BACKGROUND Magnetoencephalography (MEG) provides a direct measure of brain activity with high combined spatiotemporal resolution. Preprocessing is necessary to reduce contributions from environmental interference and biological noise. NEW METHOD The effect on the signal-to-noise ratio of different preprocessing techniques is evaluated. The signal-to-noise ratio (SNR) was defined as the ratio between the mean signal amplitude (evoked field) and the standard error of the mean over trials. RESULTS Recordings from 26 subjects obtained during and event-related visual paradigm with an Elekta MEG scanner were employed. Two methods were considered as first-step noise reduction: Signal Space Separation and temporal Signal Space Separation, which decompose the signal into components with origin inside and outside the head. Both algorithm increased the SNR by approximately 100%. Epoch-based methods, aimed at identifying and rejecting epochs containing eye blinks, muscular artifacts and sensor jumps provided an SNR improvement of 5-10%. Decomposition methods evaluated were independent component analysis (ICA) and second-order blind identification (SOBI). The increase in SNR was of about 36% with ICA and 33% with SOBI. COMPARISON WITH EXISTING METHODS No previous systematic evaluation of the effect of the typical preprocessing steps in the SNR of the MEG signal has been performed. CONCLUSIONS The application of either SSS or tSSS is mandatory in Elekta systems. No significant differences were found between the two. While epoch-based methods have been routinely applied the less often considered decomposition methods were clearly superior and therefore their use seems advisable.
Age | 2012
Ricardo Bajo; Nazareth P. Castellanos; María Eugenia López; José María Ruiz Ruiz; Pedro Montejo; Mercedes Montenegro; Marcos Llanero; Pedro Gil; Raquel Yubero; Evgenia Baykova; Nuria Paul; Sara Aurtenetxe; Francisco del Pozo; Fernando Maestú
It is still an open question whether subjective memory complaints (SMC) can actually be considered to be clinically relevant predictors for the development of an objective memory impairment and even dementia. There is growing evidence that suggests that SMC are associated with an increased risk of dementia and with the presence of biological correlates of early Alzheimers disease. In this paper, in order to shed some light on this issue, we try to discern whether subjects with SMC showed a different profile of functional connectivity compared with subjects with mild cognitive impairment (MCI) and healthy elderly subjects. In the present study, we compare the degree of synchronization of brain signals recorded with magnetoencephalography between three groups of subjects (56 in total): 19 with MCI, 12 with SMC and 25 healthy controls during a memory task. Synchronization likelihood, an index based on the theory of nonlinear dynamical systems, was used to measure functional connectivity. Briefly, results show that subjects with SMC have a very similar pattern of connectivity to control group, but on average, they present a lower synchronization value. These results could indicate that SMC are representing an initial stage with a hypo-synchronization (in comparison with the control group) where the brain system is still not compensating for the failing memory networks, but behaving as controls when compared with the MCI subjects.
Frontiers in Aging Neuroscience | 2014
María Eugenia López; Sara Aurtenetxe; Ernesto Pereda; Pablo Cuesta; Nazareth P. Castellanos; Ricardo Bruña; Guiomar Niso; Fernando Maestú; Ricardo Bajo
The proportion of elderly people in the population has increased rapidly in the last century and consequently “healthy aging” is expected to become a critical area of research in neuroscience. Evidence reveals how healthy aging depends on three main behavioral factors: social lifestyle, cognitive activity, and physical activity. In this study, we focused on the role of cognitive activity, concentrating specifically on educational and occupational attainment factors, which were considered two of the main pillars of cognitive reserve (CR). Twenty-one subjects with similar rates of social lifestyle, physical and cognitive activity were selected from a sample of 55 healthy adults. These subjects were divided into two groups according to their level of CR; one group comprised subjects with high CR (9 members) and the other one contained those with low CR (12 members). To evaluate the cortical brain connectivity network, all participants were recorded by Magnetoencephalography (MEG) while they performed a memory task (modified version of the Sternbergs Task). We then applied two algorithms [Phase Locking Value (PLV) and Phase Lag Index (PLI)] to study the dynamics of functional connectivity. In response to the same task, the subjects with lower CR presented higher functional connectivity than those with higher CR. These results may indicate that participants with low CR needed a greater “effort” than those with high CR to achieve the same level of cognitive performance. Therefore, we conclude that CR contributes to the modulation of the functional connectivity patterns of the aging brain.
Age | 2014
María Eugenia López; Pablo Cuesta; Pilar Garcés; P. N. Castellanos; Sara Aurtenetxe; Ricardo Bajo; Alberto Marcos; Marisa Delgado; Pedro Montejo; J. L. López-Pantoja; Fernando Maestú; Alberto Fernández
Mild cognitive impairment (MCI) has been described as an intermediate stage between normal aging and dementia. Previous studies characterized the alterations of brain oscillatory activity at this stage, but little is known about the differences between single and multidomain amnestic MCI patients. In order to study the patterns of oscillatory magnetic activity in amnestic MCI subtypes, a total of 105 subjects underwent an eyes-closed resting-state magnetoencephalographic recording: 36 healthy controls, 33 amnestic single domain MCIs (a-sd-MCI), and 36 amnestic multidomain MCIs (a-md-MCI). Relative power values were calculated and compared among groups. Subsequently, relative power values were correlated with neuropsychological tests scores and hippocampal volumes. Both MCI groups showed an increase in relative power in lower frequency bands (delta and theta frequency ranges) and a decrease in power values in higher frequency bands (alpha and beta frequency ranges), as compared with the control group. More importantly, clear differences emerged from the comparison between the two amnestic MCI subtypes. The a-md-MCI group showed a significant power increase within delta and theta ranges and reduced relative power within alpha and beta ranges. Such pattern correlated with the neuropsychological performance, indicating that the a-md-MCI subtype is associated not only with a “slowing” of the spectrum but also with a poorer cognitive status. These results suggest that a-md-MCI patients are characterized by a brain activity profile that is closer to that observed in Alzheimer disease. Therefore, it might be hypothesized that the likelihood of conversion to dementia would be higher within this subtype.