Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ricardo Bruña is active.

Publication


Featured researches published by Ricardo Bruña.


Neuroinformatics | 2013

HERMES: Towards an Integrated Toolbox to Characterize Functional and Effective Brain Connectivity

Guiomar Niso; Ricardo Bruña; Ernesto Pereda; Ricardo Gutiérrez; Ricardo Bajo; Fernando Maestú; Francisco del-Pozo

The analysis of the interdependence between time series has become an important field of research in the last years, mainly as a result of advances in the characterization of dynamical systems from the signals they produce, the introduction of concepts such as generalized and phase synchronization and the application of information theory to time series analysis. In neurophysiology, different analytical tools stemming from these concepts have added to the ‘traditional’ set of linear methods, which includes the cross-correlation and the coherency function in the time and frequency domain, respectively, or more elaborated tools such as Granger Causality.This increase in the number of approaches to tackle the existence of functional (FC) or effective connectivity (EC) between two (or among many) neural networks, along with the mathematical complexity of the corresponding time series analysis tools, makes it desirable to arrange them into a unified-easy-to-use software package. The goal is to allow neuroscientists, neurophysiologists and researchers from related fields to easily access and make use of these analysis methods from a single integrated toolbox.Here we present HERMES (http://hermes.ctb.upm.es), a toolbox for the Matlab® environment (The Mathworks, Inc), which is designed to study functional and effective brain connectivity from neurophysiological data such as multivariate EEG and/or MEG records. It includes also visualization tools and statistical methods to address the problem of multiple comparisons. We believe that this toolbox will be very helpful to all the researchers working in the emerging field of brain connectivity analysis.


The Journal of Neuroscience | 2014

Alpha-band hypersynchronization in progressive mild cognitive impairment. A magnetoencephalography study

María Eugenia López; Ricardo Bruña; Sara Aurtenetxe; José Ángel Pineda-Pardo; Alberto Marcos; Juan Arrazola; Ana Isabel Reinoso; Pedro Montejo; Ricardo Bajo; Fernando Maestú

People with mild cognitive impairment (MCI) show a high risk to develop Alzheimers disease (AD; Petersen et al., 2001). Nonetheless, there is a lack of studies about how functional connectivity patterns may distinguish between progressive (pMCI) and stable (sMCI) MCI patients. To examine whether there were differences in functional connectivity between groups, MEG eyes-closed recordings from 30 sMCI and 19 pMCI subjects were compared. The average conversion time of pMCI was 1 year, so they were considered as fast converters. To this end, functional connectivity in different frequency bands was assessed with phase locking value in source space. Then the significant differences between both groups were correlated with neuropsychological scores and entorhinal, parahippocampal, and hippocampal volumes. Both groups did not differ in age, gender, or educational level. pMCI patients obtained lower scores in episodic and semantic memory and also in executive functioning. At the structural level, there were no differences in hippocampal volume, although some were found in left entorhinal volume between both groups. Additionally, pMCI patients exhibit a higher synchronization in the alpha band between the right anterior cingulate and temporo-occipital regions than sMCI subjects. This hypersynchronization was inversely correlated with cognitive performance, both hippocampal volumes, and left entorhinal volume. The increase in phase synchronization between the right anterior cingulate and temporo-occipital areas may be predictive of conversion from MCI to AD.


Journal of Neural Engineering | 2012

Analysis of spontaneous MEG activity in mild cognitive impairment and Alzheimer's disease using spectral entropies and statistical complexity measures

Ricardo Bruña; Jesús Poza; Carlos Gómez; María García; Alberto Fernández; Roberto Hornero

Alzheimers disease (AD) is the most common cause of dementia. Over the last few years, a considerable effort has been devoted to exploring new biomarkers. Nevertheless, a better understanding of brain dynamics is still required to optimize therapeutic strategies. In this regard, the characterization of mild cognitive impairment (MCI) is crucial, due to the high conversion rate from MCI to AD. However, only a few studies have focused on the analysis of magnetoencephalographic (MEG) rhythms to characterize AD and MCI. In this study, we assess the ability of several parameters derived from information theory to describe spontaneous MEG activity from 36 AD patients, 18 MCI subjects and 26 controls. Three entropies (Shannon, Tsallis and Rényi entropies), one disequilibrium measure (based on Euclidean distance ED) and three statistical complexities (based on Lopez Ruiz-Mancini-Calbet complexity LMC) were used to estimate the irregularity and statistical complexity of MEG activity. Statistically significant differences between AD patients and controls were obtained with all parameters (p < 0.01). In addition, statistically significant differences between MCI subjects and controls were achieved by ED and LMC (p < 0.05). In order to assess the diagnostic ability of the parameters, a linear discriminant analysis with a leave-one-out cross-validation procedure was applied. The accuracies reached 83.9% and 65.9% to discriminate AD and MCI subjects from controls, respectively. Our findings suggest that MCI subjects exhibit an intermediate pattern of abnormalities between normal aging and AD. Furthermore, the proposed parameters provide a new description of brain dynamics in AD and MCI.


Journal of Alzheimer's Disease | 2015

Influence of the APOE ε4 Allele and Mild Cognitive Impairment Diagnosis in the Disruption of the MEG Resting State Functional Connectivity in Sources Space

Pablo Cuesta; Pilar Garcés; Nazareth P. Castellanos; María Eugenia López; Sara Aurtenetxe; Ricardo Bajo; José Ángel Pineda-Pardo; Ricardo Bruña; Antonio García Marín; Marisa Delgado; Ana Barabash; Inés Ancín; José Antonio Cabranes; Alberto Fernández; Francisco del Pozo; Miguel Sancho; Alberto Marcos; Akinori Nakamura; Fernando Maestú

The apolipoprotein E (APOE) ε4 allele constitutes the major genetic risk for the development of late onset Alzheimers disease (AD). However, its influence on the neurodegeneration that occurs in early AD remains unresolved. In this study, the resting state magnetoencephalography(MEG) recordings were obtained from 27 aged healthy controls and 36 mild cognitive impairment (MCI) patients. All participants were divided into carriers and non-carriers of the ε4 allele. We have calculated the functional connectivity (FC) in the source space along brain regions estimated using the Harvard-Oxford atlas and in the classical bands. Then, a two way ANOVA analysis (diagnosis and APOE) was performed in each frequency band. The diagnosis effect consisted of a diminished FC within the high frequency bands in the MCI patients, affecting medial temporal and parietal regions. The APOE effect produced a decreased long range FC in delta band in ε4 carriers. Finally, the interaction effect showed that the FC pattern of the right frontal-temporal region could be reflecting a compensatory/disruption process within the ε4 allele carriers. Several of these results correlated with cognitive decline and neuropsychological performance. The present study characterizes how the APOE ε4 allele and MCI status affect the brains functional organization by analyzing the FC patterns in MEG resting state in the sources space. Therefore a combination of genetic, neuropsychological, and neurophysiological information might help to detect MCI patients at higher risk of conversion to AD and asymptomatic subjects at higher risk of developing a manifest cognitive deterioration.


NeuroImage | 2014

Guiding functional connectivity estimation by structural connectivity in MEG: An application to discrimination of conditions of mild cognitive impairment

José Ángel Pineda-Pardo; Ricardo Bruña; Mark W. Woolrich; Alberto Marcos; Anna C. Nobre; Fernando Maestú; Diego Vidaurre

Whole brain resting state connectivity is a promising biomarker that might help to obtain an early diagnosis in many neurological diseases, such as dementia. Inferring resting-state connectivity is often based on correlations, which are sensitive to indirect connections, leading to an inaccurate representation of the real backbone of the network. The precision matrix is a better representation for whole brain connectivity, as it considers only direct connections. The network structure can be estimated using the graphical lasso (GL), which achieves sparsity through l1-regularization on the precision matrix. In this paper, we propose a structural connectivity adaptive version of the GL, where weaker anatomical connections are represented as stronger penalties on the corresponding functional connections. We applied beamformer source reconstruction to the resting state MEG recordings of 81 subjects, where 29 were healthy controls, 22 were single-domain amnestic Mild Cognitive Impaired (MCI), and 30 were multiple-domain amnestic MCI. An atlas-based anatomical parcellation of 66 regions was obtained for each subject, and time series were assigned to each of the regions. The fiber densities between the regions, obtained with deterministic tractography from diffusion-weighted MRI, were used to define the anatomical connectivity. Precision matrices were obtained with the region specific time series in five different frequency bands. We compared our method with the traditional GL and a functional adaptive version of the GL, in terms of log-likelihood and classification accuracies between the three groups. We conclude that introducing an anatomical prior improves the expressivity of the model and, in most cases, leads to a better classification between groups.


Frontiers in Aging Neuroscience | 2014

Cognitive reserve is associated with the functional organization of the brain in healthy aging: a MEG study

María Eugenia López; Sara Aurtenetxe; Ernesto Pereda; Pablo Cuesta; Nazareth P. Castellanos; Ricardo Bruña; Guiomar Niso; Fernando Maestú; Ricardo Bajo

The proportion of elderly people in the population has increased rapidly in the last century and consequently “healthy aging” is expected to become a critical area of research in neuroscience. Evidence reveals how healthy aging depends on three main behavioral factors: social lifestyle, cognitive activity, and physical activity. In this study, we focused on the role of cognitive activity, concentrating specifically on educational and occupational attainment factors, which were considered two of the main pillars of cognitive reserve (CR). Twenty-one subjects with similar rates of social lifestyle, physical and cognitive activity were selected from a sample of 55 healthy adults. These subjects were divided into two groups according to their level of CR; one group comprised subjects with high CR (9 members) and the other one contained those with low CR (12 members). To evaluate the cortical brain connectivity network, all participants were recorded by Magnetoencephalography (MEG) while they performed a memory task (modified version of the Sternbergs Task). We then applied two algorithms [Phase Locking Value (PLV) and Phase Lag Index (PLI)] to study the dynamics of functional connectivity. In response to the same task, the subjects with lower CR presented higher functional connectivity than those with higher CR. These results may indicate that participants with low CR needed a greater “effort” than those with high CR to achieve the same level of cognitive performance. Therefore, we conclude that CR contributes to the modulation of the functional connectivity patterns of the aging brain.


Journal of Medical Systems | 2015

A Fuzzy Inference System for Closed-Loop Deep Brain Stimulation in Parkinson's Disease

Carmen Camara; Kevin Warwick; Ricardo Bruña; Tipu Z. Aziz; Francisco del Pozo; Fernando Maestú

Parkinsons disease is a complex neurodegenerative disorder for which patients present many symptoms, tremor being the main one. In advanced stages of the disease, Deep Brain Stimulation is a generalized therapy which can significantly improve the motor symptoms. However despite its beneficial effects on treating the symptomatology, the technique can be improved. One of its main limitations is that the parameters are fixed, and the stimulation is provided uninterruptedly, not taking into account any fluctuation in the patients state. A closed-loop system which provides stimulation by demand would adjust the stimulation to the variations in the state of the patient, stimulating only when it is necessary. It would not only perform a more intelligent stimulation, capable of adapting to the changes in real time, but also extending the devices battery life, thereby avoiding surgical interventions. In this work we design a tool that learns to recognize the principal symptom of Parkinsons disease and particularly the tremor. The goal of the designed system is to detect the moments the patient is suffering from a tremor episode and consequently to decide whether stimulation is needed or not. For that, local field potentials were recorded in the subthalamic nucleus of ten Parkinsonian patients, who were diagnosed with tremor-dominant Parkinsons disease and who underwent surgery for the implantation of a neurostimulator. Electromyographic activity in the forearm was simultaneously recorded, and the relation between both signals was evaluated using two different synchronization measures. The results of evaluating the synchronization indexes on each moment represent the inputs to the designed system. Finally, a fuzzy inference system was applied with the goal of identifying tremor episodes. Results are favourable, reaching accuracies of higher 98.7 % in 70 % of the patients.


Scientific Reports | 2016

Alpha band disruption in the AD-continuum starts in the Subjective Cognitive Decline stage: a MEG study

David López-Sanz; Ricardo Bruña; Pilar Garcés; C. Camara; N. Serrano; Inmaculada C. Rodríguez-Rojo; Marisa Delgado; Mercedes Montenegro; Ramón López-Higes; Miguel Yus; Fernando Maestú

The consideration of Subjective Cognitive Decline (SCD) as a preclinical stage of AD remains still a matter of debate. Alpha band alterations represent one of the most significant changes in the electrophysiological profile of AD. In particular, AD patients exhibit reduced alpha relative power and frequency. We used alpha band activity measured with MEG to study whether SCD and MCI elders present these electrophysiological changes characteristic of AD, and to determine the evolution of the observed alterations across AD spectrum. The total sample consisted of 131 participants: 39 elders without SCD, 41 elders with SCD and 51 MCI patients. All of them underwent MEG and MRI scans and neuropsychological assessment. SCD and MCI patients exhibited a similar reduction in alpha band activity compared with the no SCD group. However, only MCI patients showed a slowing in their alpha peak frequency compared with both SCD and no SCD. These changes in alpha band were related to worse cognition. Our results suggest that AD-related alterations may start in the SCD stage, with a reduction in alpha relative power. It is later, in the MCI stage, where the slowing of the spectral profile takes place, giving rise to objective deficits in cognitive functioning.


Frontiers in Aging Neuroscience | 2017

Functional Connectivity Disruption in Subjective Cognitive Decline and Mild Cognitive Impairment: A Common Pattern of Alterations

David López-Sanz; Ricardo Bruña; Pilar Garcés; María Carmen Martín-Buro; Stefan Walter; María Luisa Delgado; Mercedes Montenegro; Ramon Lopez Higes; Alberto Marcos; Fernando Maestú

Functional connectivity (FC) alterations represent a key feature in Alzheimers Disease (AD) and provide a useful tool to characterize and predict the course of the disease. Those alterations have been also described in Mild Cognitive Impairment (MCI), a prodromal stage of AD. There is a growing interest in detecting AD pathology in the brain in the very early stages of the disorder. Subjective Cognitive Decline (SCD) could represent a preclinical asymptomatic stage of AD but very little is known about this population. In the present work we assessed whether FC disruptions are already present in this stage, and if they share any spatial distribution properties with MCI alterations (a condition known to be highly related to AD). To this end, we measured electromagnetic spontaneous activity with MEG in 39 healthy control elders, 41 elders with SCD and 51 MCI patients. The results showed FC alterations in both SCD and MCI compared to the healthy control group. Interestingly, both groups exhibited a very similar spatial pattern of altered links: a hyper-synchronized anterior network and a posterior network characterized by a decrease in FC. This decrease was more pronounced in the MCI group. These results highlight that elders with SCD present FC alterations. More importantly, those disruptions affected AD typically related areas and showed great overlap with the alterations exhibited by MCI patients. These results support the consideration of SCD as a preclinical stage of AD and may indicate that FC alterations appear very early in the course of the disease.


Archive | 2014

EEG Metrics Evaluation in Simultaneous EEG-fMRI Olfactory Experiment

Eva Manzanedo; Ana Beatriz Solana; Elena Molina; Ricardo Bruña; Susana Borromeo; Juan Antonio Hernández-Tamames; Francisco del Pozo

This work analyses the statistical significant changes in the EEG signal after the supply of olfactory stimuli during simultaneous EEG/fMRI olfactory experiments. Different spectral parameters are evaluated including the spectral power in different EEG bands of interest and spectral morphology measures, such as median frequency or statistical complexity. Beta 2 spectral power increase in frontal, midline and parietal areas has been found to be very significant (p < 0.00000840) when an odorant of any type is supplied to a subject in this experiment. Also, this increase has been found to be more significant for trigeminal than for natural odorants.

Collaboration


Dive into the Ricardo Bruña's collaboration.

Top Co-Authors

Avatar

Fernando Maestú

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

María Eugenia López

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alberto Fernández

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pablo Cuesta

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Pilar Garcés

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Ricardo Bajo

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Ana Barabash

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

David López-Sanz

Complutense University of Madrid

View shared research outputs
Researchain Logo
Decentralizing Knowledge