Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ricardo C. Rodríguez de la Vega is active.

Publication


Featured researches published by Ricardo C. Rodríguez de la Vega.


Annual Review of Genomics and Human Genetics | 2009

The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms.

Bryan G. Fry; Kim Roelants; Donald E. Champagne; Holger Scheib; Joel D. A. Tyndall; Glenn F. King; Timo J. Nevalainen; Janette A Norman; Richard J. Lewis; Raymond S. Norton; Camila Renjifo; Ricardo C. Rodríguez de la Vega

Throughout evolution, numerous proteins have been convergently recruited into the venoms of various animals, including centipedes, cephalopods, cone snails, fish, insects (several independent venom systems), platypus, scorpions, shrews, spiders, toxicoferan reptiles (lizards and snakes), and sea anemones. The protein scaffolds utilized convergently have included AVIT/colipase/prokineticin, CAP, chitinase, cystatin, defensins, hyaluronidase, Kunitz, lectin, lipocalin, natriuretic peptide, peptidase S1, phospholipase A(2), sphingomyelinase D, and SPRY. Many of these same venom protein types have also been convergently recruited for use in the hematophagous gland secretions of invertebrates (e.g., fleas, leeches, kissing bugs, mosquitoes, and ticks) and vertebrates (e.g., vampire bats). Here, we discuss a number of overarching structural, functional, and evolutionary generalities of the protein families from which these toxins have been frequently recruited and propose a revised and expanded working definition for venom. Given the large number of striking similarities between the protein compositions of conventional venoms and hematophagous secretions, we argue that the latter should also fall under the same definition.


Trends in Pharmacological Sciences | 2003

Novel interactions between K+ channels and scorpion toxins

Ricardo C. Rodríguez de la Vega; Enrique Merino; Baltazar Becerril; Lourival D. Possani

K(+) channels are macromolecules embedded in biological membranes, where they play a key role in cellular excitability and signal transduction pathways. Knowledge of their structure should help improve our understanding of their function and lead to the design of therapeutic compounds. Most pharmacological and structural characteristics of these channels have been elucidated by using high-affinity channel blockers isolated from scorpion venoms. Recent data on the three-dimensional structures of K(+) channels and novel scorpion toxins suggest a variety of novel interacting modes of these channels and toxins, which should help increase our understanding of the K(+) channel structure-function relationship.


BMC Genomics | 2007

Transcriptome analysis of the venom gland of the Mexican scorpion Hadrurus gertschi (Arachnida: Scorpiones)

Elisabeth F. Schwartz; Elia Diego-García; Ricardo C. Rodríguez de la Vega; Lourival D. Possani

BackgroundScorpions like other venomous animals posses a highly specialized organ that produces, secretes and disposes the venom components. In these animals, the last postabdominal segment, named telson, contains a pair of venomous glands connected to the stinger. The isolation of numerous scorpion toxins, along with cDNA-based gene cloning and, more recently, proteomic analyses have provided us with a large collection of venom components sequences. However, all of them are secreted, or at least are predicted to be secretable gene products. Therefore very little is known about the cellular processes that normally take place inside the glands for production of the venom mixture. To gain insights into the scorpion venom gland biology, we have decided to perform a transcriptomic analysis by constructing a cDNA library and conducting a random sequencing screening of the transcripts.ResultsFrom the cDNA library prepared from a single venom gland of the scorpion Hadrurus gertschi, 160 expressed sequence tags (ESTs) were analyzed. These transcripts were further clustered into 68 unique sequences (20 contigs and 48 singlets), with an average length of 919 bp. Half of the ESTs can be confidentially assigned as homologues of annotated gene products. Annotation of these ESTs, with the aid of Gene Ontology terms and homology to eukaryotic orthologous groups, reveals some cellular processes important for venom gland function; including high protein synthesis, tuned posttranslational processing and trafficking. Nonetheless, the main group of the identified gene products includes ESTs similar to known scorpion toxins or other previously characterized scorpion venom components, which account for nearly 60% of the identified proteins.ConclusionTo the best of our knowledge this report contains the first transcriptome analysis of genes transcribed by the venomous gland of a scorpion. The data were obtained for the species Hadrurus gertschi, belonging to the family Caraboctonidae. One hundred and sixty ESTs were analyzed, showing enrichment in genes that encode for products similar to known venom components, but also provides the first sketch of cellular components, molecular functions, biological processes and some unique sequences of the scorpion venom gland.


Molecular Ecology | 2014

Fungal evolutionary genomics provides insight into the mechanisms of adaptive divergence in eukaryotes

Pierre Gladieux; Jeanne Ropars; Hélène Badouin; Antoine Branca; Gabriela Aguileta; Damien M. de Vienne; Ricardo C. Rodríguez de la Vega; Sara Branco; Tatiana Giraud

Fungi are ideal model organisms for dissecting the genomic bases of adaptive divergence in eukaryotes. They have simple morphologies and small genomes, occupy contrasting, well‐identified ecological niches and tend to have short generation times, and many are amenable to experimental approaches. Fungi also display diverse lifestyles, from saprotrophs to pathogens or mutualists, and they play extremely important roles in both ecosystems and human activities, as wood decayers, mycorrhizal fungi, lichens, endophytes, plant and animal pathogens, and in fermentation or drug production. We review here recent insights into the patterns and mechanisms of adaptive divergence in fungi, including sources of divergence, genomic variation and, ultimately, speciation. We outline the various ecological sources of divergent selection and genomic changes, showing that gene loss and changes in gene expression and in genomic architecture are important adaptation processes, in addition to the more widely recognized processes of amino acid substitution and gene duplication. We also review recent findings regarding the interspecific acquisition of genomic variation and suggesting an important role for introgression, hybridization and horizontal gene transfers (HGTs). We show that transposable elements can mediate several of these genomic changes, thus constituting important factors for adaptation. Finally, we review the consequences of divergent selection in terms of speciation, arguing that genetic incompatibilities may not be as widespread as generally thought and that pleiotropy between adaptation and reproductive isolation is an important route of speciation in fungal pathogens.


Biochimica et Biophysica Acta | 2002

Two novel toxins from the Amazonian scorpion Tityus cambridgei that block Kv1.3 and Shaker B K+-channels with distinctly different affinities

Cesar V.F. Batista; Froylan Gómez-Lagunas; Ricardo C. Rodríguez de la Vega; Péter Hajdu; Gyorgy Panyi; R. Gáspár; Lourival D. Possani

Two novel toxic peptides (Tc30 and Tc32) were isolated and characterized from the venom of the Brazilian scorpion Tityus cambridgei. The first have 37 and the second 35 amino acid residues, with molecular masses of 3,871.8 and 3,521.5, respectively. Both contain three disulfide bridges but share only 27% identity. They are relatively potent inhibitors of K(+)-currents in human T lymphocytes with K(d) values of 10 nM for Tc32 and 16 nM for Tc30, but they are less potent or quite poor blockers of Shaker B K(+)-channels, with respective K(d) values of 74 nM and 4.7 microM. Tc30 has a lysine in position 27 and a tyrosine at position 36 identical to those of charybdotoxin. These two positions conform the dyad considered essential for activity. On the contrary, Tc32 has a serine in the position equivalent to lysine 27 of charybdotoxin and does not contain any aromatic amino acid. Due to its unique primary sequence and to its distinctive preference for K(+)-channels of T lymphocytes, it was classified as the first example of a new subfamily of K(+)-channel-specific peptides (alpha-KT x 18.1). Tc30 is a member of the Tityus toxin II-9 subfamily and was given the number alpha-KT x 4.4.


Proteomics | 2008

Proteomic analysis of the venom from the fish eating coral snake Micrurus surinamensis: Novel toxins, their function and phylogeny

Timoteo Olamendi-Portugal; Cesar V.F. Batista; Rita Restano-Cassulini; Victoria Pando; Oscar Villa-Hernandez; Alfonso Zavaleta-Martínez-Vargas; Maria C. Salas-Arruz; Ricardo C. Rodríguez de la Vega; Baltazar Becerril; Lourival D. Possani

The protein composition of the soluble venom from the South American fish‐eating coral snake Micrurus surinamensis surinamensis, here abbreviated M. surinamensis, was separated by RP‐HPLC and 2‐DE, and their components were analyzed by automatic Edman degradation, MALDI‐TOF and ESI‐MS/MS. Approximately 100 different molecules were identified. Sixty‐two components possess molecular masses between 6 and 8 kDa, are basically charged molecules, among which are cytotoxins and neurotoxins lethal to fish (Brachidanios rerio). Six new toxins (abbreviated Ms1–Ms5 and Ms11) were fully sequenced. Amino acid sequences similar to the enzymes phospholipase A2 and amino acid oxidase were identified. Over 20 additional peptides were identified by sequencing minor components of the HPLC separation and from 2‐DE gels. A functional assessment of the physiological activity of the six toxins was also performed by patch clamp using muscular nicotinic acetylcholine receptor assays. Variable degrees of blockade were observed, most of them reversible. The structural and functional data obtained were used for phylogenetic analysis, providing information on some evolutionary aspects of the venom components of this snake. This contribution increases by a factor of two the total number of α‐neurotoxins sequenced from the Micrurus genus in currently available literature.


Molecular Pharmacology | 2012

Vm24, a natural immunosuppressive peptide, potently and selectively blocks Kv1.3 potassium channels of human T cells.

Zoltán Varga; Georgina Gurrola-Briones; Ferenc Papp; Ricardo C. Rodríguez de la Vega; Gustavo Pedraza-Alva; Rajeev B. Tajhya; R. Gáspár; Luis Cárdenas; Yvonne Rosenstein; Christine Beeton; Lourival D. Possani; Gyorgy Panyi

Blockade of Kv1.3 K+ channels in T cells is a promising therapeutic approach for the treatment of autoimmune diseases such as multiple sclerosis and type 1 diabetes mellitus. Vm24 (α-KTx 23.1) is a novel 36-residue Kv1.3-specific peptide isolated from the venom of the scorpion Vaejovis mexicanus smithi. Vm24 inhibits Kv1.3 channels of human lymphocytes with high affinity (Kd = 2.9 pM) and exhibits >1500-fold selectivity over other ion channels assayed. It inhibits the proliferation and Ca2+ signaling of human T cells in vitro and reduces delayed-type hypersensitivity reactions in rats in vivo. Our results indicate that Vm24 has exceptional pharmacological properties that make it an excellent candidate for treatment of certain autoimmune diseases.


Journal of Biological Chemistry | 2010

Target promiscuity and heterogeneous effects of tarantula venom peptides affecting Na+ and K+ ion channels.

Elisa Redaelli; Rita Restano Cassulini; Deyanira Fuentes Silva; Herlinda Clement; Emanuele Schiavon; Fernando Z. Zamudio; George V. Odell; Annarosa Arcangeli; Jeffrey J. Clare; Alejandro Alagón; Ricardo C. Rodríguez de la Vega; Lourival D. Possani; Enzo Wanke

Venom-derived peptide modulators of ion channel gating are regarded as essential tools for understanding the molecular motions that occur during the opening and closing of ion channels. In this study, we present the characterization of five spider toxins on 12 human voltage-gated ion channels, following observations about the target promiscuity of some spider toxins and the ongoing revision of their “canonical” gating-modifying mode of action. The peptides were purified de novo from the venom of Grammostola rosea tarantulas, and their sequences were confirmed by Edman degradation and mass spectrometry analysis. Their effects on seven tetrodotoxin-sensitive Na+ channels, the three human ether-à-go-go (hERG)-related K+ channels, and two human Shaker-related K+ channels were extensively characterized by electrophysiological techniques. All the peptides inhibited ion conduction through all the Na+ channels tested, although with distinctive patterns. The peptides also affected the three pharmaceutically relevant hERG isoforms differently. At higher concentrations, all peptides also modified the gating of the Na+ channels by shifting the activation to more positive potentials, whereas more complex effects were recorded on hERG channels. No effects were evident on the two Shaker-related K+ channels at concentrations well above the IC50 value for the affected channels. Given the sequence diversity of the tested peptides, we propose that tarantula toxins should be considered both as multimode and target-promiscuous ion channel modulators; both features should not be ignored when extracting mechanistic interpretations about ion channel gating. Our observations could also aid in future structure-function studies and might help the development of novel ion channel-specific drugs.


Biology Letters | 2012

Molecular evidence for an Asian origin of monitor lizards followed by Tertiary dispersals to Africa and Australasia

Nicolas Vidal; Julie Marin; Julia Sassi; Fabia U. Battistuzzi; Steve Donnellan; Alison J. Fitch; Bryan G. Fry; Freek J. Vonk; Ricardo C. Rodríguez de la Vega; Arnaud Couloux; S. Blair Hedges

Monitor lizards are emblematic reptiles that are widely distributed in the Old World. Although relatively well studied in vertebrate research, their biogeographic history is still controversial. We constructed a molecular dataset for 54 anguimorph species, including representatives of all families with detailed sampling of the Varanidae (38 species). Our results are consistent with an Asian origin of the Varanidae followed by a dispersal to Africa 41 (49–33) Ma, possibly via an Iranian route. Another major event was the dispersal of monitors to Australia in the Late Eocene–Oligocene 32 (39–26) Ma. This divergence estimate adds to the suggestion that Australia was colonized by several squamate lineages prior to the collision of the Australian plate with the Asian plate starting 25 Ma.


Current Biology | 2015

Adaptive Horizontal Gene Transfers between Multiple Cheese-Associated Fungi.

Jeanne Ropars; Ricardo C. Rodríguez de la Vega; Manuela López-Villavicencio; Jérôme Gouzy; Erika Sallet; Emilie Dumas; Sandrine Lacoste; Robert Debuchy; Joëlle Dupont; Antoine Branca; Tatiana Giraud

Summary Domestication is an excellent model for studies of adaptation because it involves recent and strong selection on a few, identified traits [1–5]. Few studies have focused on the domestication of fungi, with notable exceptions [6–11], despite their importance to bioindustry [12] and to a general understanding of adaptation in eukaryotes [5]. Penicillium fungi are ubiquitous molds among which two distantly related species have been independently selected for cheese making—P. roqueforti for blue cheeses like Roquefort and P. camemberti for soft cheeses like Camembert. The selected traits include morphology, aromatic profile, lipolytic and proteolytic activities, and ability to grow at low temperatures, in a matrix containing bacterial and fungal competitors [13–15]. By comparing the genomes of ten Penicillium species, we show that adaptation to cheese was associated with multiple recent horizontal transfers of large genomic regions carrying crucial metabolic genes. We identified seven horizontally transferred regions (HTRs) spanning more than 10 kb each, flanked by specific transposable elements, and displaying nearly 100% identity between distant Penicillium species. Two HTRs carried genes with functions involved in the utilization of cheese nutrients or competition and were found nearly identical in multiple strains and species of cheese-associated Penicillium fungi, indicating recent selective sweeps; they were experimentally associated with faster growth and greater competitiveness on cheese and contained genes highly expressed in the early stage of cheese maturation. These findings have industrial and food safety implications and improve our understanding of the processes of adaptation to rapid environmental changes.

Collaboration


Dive into the Ricardo C. Rodríguez de la Vega's collaboration.

Top Co-Authors

Avatar

Lourival D. Possani

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Tatiana Giraud

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar

Cesar V.F. Batista

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Federico del Río-Portilla

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Jeanne Ropars

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

R. Gáspár

University of Debrecen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge