Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ricardo Carnicer is active.

Publication


Featured researches published by Ricardo Carnicer.


Antioxidants & Redox Signaling | 2013

Nitric oxide synthases in heart failure.

Ricardo Carnicer; Mark J. Crabtree; Vidhya Sivakumaran; Barbara Casadei; David A. Kass

SIGNIFICANCEnThe regulation of myocardial function by constitutive nitric oxide synthases (NOS) is important for the maintenance of myocardial Ca(2+) homeostasis, relaxation and distensibility, and protection from arrhythmia and abnormal stress stimuli. However, sustained insults such as diabetes, hypertension, hemodynamic overload, and atrial fibrillation lead to dysfunctional NOS activity with superoxide produced instead of NO and worse pathophysiology.nnnRECENT ADVANCESnMajor strides in understanding the role of normal and abnormal constitutive NOS in the heart have revealed molecular targets by which NO modulates myocyte function and morphology, the role and nature of post-translational modifications of NOS, and factors controlling nitroso-redox balance. Localized and differential signaling from NOS1 (neuronal) versus NOS3 (endothelial) isoforms are being identified, as are methods to restore NOS function in heart disease.nnnCRITICAL ISSUESnAbnormal NOS signaling plays a key role in many cardiac disorders, while targeted modulation may potentially reverse this pathogenic source of oxidative stress.nnnFUTURE DIRECTIONSnImprovements in the clinical translation of potent modulators of NOS function/dysfunction may ultimately provide a powerful new treatment for many hearts diseases that are fueled by nitroso-redox imbalance.


Journal of Molecular and Cellular Cardiology | 2014

Nitric oxide synthase regulation of cardiac excitation–contraction coupling in health and disease

Jillian N. Simon; Drew Duglan; Barbara Casadei; Ricardo Carnicer

Significant advances in our understanding of the ability of nitric oxide synthases (NOS) to modulate cardiac function have provided key insights into the role NOS play in the regulation of excitation-contraction (EC) coupling in health and disease. Through both cGMP-dependent and cGMP-independent (e.g. S-nitrosylation) mechanisms, NOS have the ability to alter intracellular Ca(2+) handling and the myofilament response to Ca(2+), thereby impacting the systolic and diastolic performance of the myocardium. Findings from experiments using nitric oxide (NO) donors and NOS inhibition or gene deletion clearly implicate dysfunctional NOS as a critical contributor to many cardiovascular disease states. However, studies to date have only partially addressed NOS isoform-specific effects and, more importantly, how subcellular localization of NOS influences ion channels involved in myocardial EC coupling and excitability. In this review, we focus on the contribution of each NOS isoform to cardiac dysfunction and on the role of uncoupled NOS activity in common cardiac disease states, including heart failure, diabetic cardiomyopathy, ischemia/reperfusion injury and atrial fibrillation. We also review evidence that clearly indicates the importance of NO in cardioprotection. This article is part of a Special Issue entitled Redox Signalling in the Cardiovascular System.


Journal of Biological Chemistry | 2012

Regulation of Endothelial Nitric Oxide Synthase (NOS) S-Glutathionylation by Neuronal NOS: Evidence of a Functional Interaction between Myocardial Constitutive NOS isoforms

W Idigo; Svetlana Reilly; Mei Hua Zhang; Yin Hua Zhang; Raja Jayaram; Ricardo Carnicer; Mark J. Crabtree; Jean-Luc Balligand; Barbara Casadei

Background: Whether neuronal nitric-oxide synthase (nNOS) plays a role in the endothelial NOS (eNOS)-dependent negative inotropic effect of β3-adrenergic stimulation remains to be established. Results: nNOS knock-out or inhibition leads to increased superoxide production, eNOS uncoupling, and abrogation of β3-adrenergic responses. Conclusion: Disabling nNOS disrupts eNOS function and downstream signaling. Significance: nNOS plays a crucial role in preserving myocardial nitroso-redox balance and coupled eNOS activity. Myocardial constitutive No production depends on the activity of both endothelial and neuronal NOS (eNOS and nNOS, respectively). Stimulation of myocardial β3-adrenergic receptor (β3-AR) produces a negative inotropic effect that is dependent on eNOS. We evaluated whether nNOS also plays a role in β3-AR signaling and found that the β3-AR-mediated reduction in cell shortening and [Ca2+]i transient amplitude was abolished both in eNOS−/− and nNOS−/− left ventricular (LV) myocytes and in wild type LV myocytes after nNOS inhibition with S-methyl-l-thiocitrulline. LV superoxide (O2̇̄) production was increased in nNOS−/− mice and reduced by l-Nω-nitroarginine methyl ester (l-NAME), indicating uncoupling of eNOS activity. eNOS S-glutathionylation and Ser-1177 phosphorylation were significantly increased in nNOS−/− myocytes, whereas myocardial tetrahydrobiopterin, eNOS Thr-495 phosphorylation, and arginase activity did not differ between genotypes. Although inhibitors of xanthine oxidoreductase (XOR) or NOX2 NADPH oxidase caused a similar reduction in myocardial O2̇̄, only XOR inhibition reduced eNOS S-glutathionylation and Ser-1177 phosphorylation and restored both eNOS coupled activity and the negative inotropic and [Ca2+]i transient response to β3-AR stimulation in nNOS−/− mice. In summary, our data show that increased O2̇̄ production by XOR selectively uncouples eNOS activity and abolishes the negative inotropic effect of β3-AR stimulation in nNOS−/− myocytes. These findings provide unequivocal evidence of a functional interaction between the myocardial constitutive NOS isoforms and indicate that aspects of the myocardial phenotype of nNOS−/− mice result from disruption of eNOS signaling.


Circulation Research | 2012

Cardiomyocyte GTP Cyclohydrolase 1 and Tetrahydrobiopterin Increase NOS1 Activity and Accelerate Myocardial Relaxation

Ricardo Carnicer; Ashley B. Hale; Silvia Suffredini; Xing Liu; Svetlana Reilly; Mei Hua Zhang; Nicoletta C. Surdo; Jennifer K. Bendall; Mark J. Crabtree; Gregory Lim; Nicholas J. Alp; Keith M. Channon; Barbara Casadei

Rationale: Tetrahydrobiopterin (BH4) is an essential cofactor of nitric oxide synthases (NOS). Oral BH4 supplementation preserves cardiac function in animal models of cardiac disease; however, the mechanisms underlying these findings are not completely understood. Objective: To study the effect of myocardial transgenic overexpression of the rate-limiting enzyme in BH4 biosynthesis, GTP cyclohydrolase 1 (GCH1), on NOS activity, myocardial function, and Ca2+ handling. Methods and Results: GCH1overexpression significantly increased the biopterins level in left ventricular (LV) myocytes but not in the nonmyocyte component of the LV myocardium or in plasma. The ratio between BH4 and its oxidized products was lower in mGCH1-Tg, indicating that a large proportion of the myocardial biopterin pool was oxidized; nevertheless, myocardial NOS1 activity was increased in mGCH1-Tg, and superoxide release was significantly reduced. Isolated hearts and field-stimulated LV myocytes (3 Hz, 35°C) overexpressing GCH1 showed a faster relaxation and a PKA-mediated increase in the PLB Ser16 phosphorylated fraction and in the rate of decay of the [Ca2+]i transient. RyR2 S-nitrosylation and diastolic Ca2+ leak were larger in mGCH1-Tg and ICa density was lower; nevertheless the amplitude of the [Ca2+]i transient and contraction did not differ between genotypes, because of an increase in the SR fractional release of Ca2+ in mGCH1-Tg myocytes. Xanthine oxidoreductase inhibition abolished the difference in superoxide production but did not affect myocardial function in either group. By contrast, NOS1 inhibition abolished the differences in ICa density, Ser16 PLB phosphorylation, [Ca2+]i decay, and myocardial relaxation between genotypes. Conclusions: Myocardial GCH1 activity and intracellular BH4 are a limiting factor for constitutive NOS1 and SERCA2A activity in the healthy myocardium. Our findings suggest that GCH1 may be a valuable target for the treatment of LV diastolic dysfunction.


Science Translational Medicine | 2016

Up-regulation of miR-31 in human atrial fibrillation begets the arrhythmia by depleting dystrophin and neuronal nitric oxide synthase

Svetlana Reilly; Xing Liu; Ricardo Carnicer; Alice Recalde; Anna Muszkiewicz; Raja Jayaram; Maria Cristina Carena; Rohan S. Wijesurendra; Matilde Stefanini; Nicoletta C. Surdo; Oliver Lomas; Chandana Ratnatunga; Rana Sayeed; George Krasopoulos; Timothy Rajakumar; Alfonso Bueno-Orovio; Sander Verheule; Tudor A. Fulga; Blanca Rodriguez; Ulrich Schotten; Barbara Casadei

Atrial microRNA-31 up-regulation causes dystrophin and nNOS depletion, which in turn contributes to the electrical phenotype of atrial fibrillation. Rhythm remodeling traced to tiny RNA Atrial fibrillation (AF) is characterized by abnormal heart rhythms and can be caused by a variety of risk factors ranging from obesity to diabetes. Although treatments exist, AF is famously able to recur by “remodeling” the heart tissue electrically and structurally to maintain its unsteady beat. Reilly et al. have discovered a small noncoding RNA, miR-31, that is responsible for a string of signals that allow for such remodeling. An increase in miR-31 led to depletion of neuronal nitric oxide synthase (nNOS) and repression of dystrophin (which binds nNOS in muscle cells) in the fibrillating atrial myocardium of both humans and goats. These mechanistic findings were further explored in mice. Because up-regulation of miR-31 and the resulting loss of dystrophin and nNOS in AF are specific to the atrium, it may be possible to target interventions to this remodeling pathway, thus providing a safer therapeutic option for patients with AF than those that are currently available, including ablation and ion channel blockers. Atrial fibrillation (AF) is a growing public health burden, and its treatment remains a challenge. AF leads to electrical remodeling of the atria, which in turn promotes AF maintenance and resistance to treatment. Although remodeling has long been a therapeutic target in AF, its causes remain poorly understood. We show that atrial-specific up-regulation of microRNA-31 (miR-31) in goat and human AF depletes neuronal nitric oxide synthase (nNOS) by accelerating mRNA decay and alters nNOS subcellular localization by repressing dystrophin translation. By shortening action potential duration and abolishing rate-dependent adaptation of the action potential duration, miR-31 overexpression and/or disruption of nNOS signaling recapitulates features of AF-induced remodeling and significantly increases AF inducibility in mice in vivo. By contrast, silencing miR-31 in atrial myocytes from patients with AF restores dystrophin and nNOS and normalizes action potential duration and its rate dependency. These findings identify atrial-specific up-regulation of miR-31 in human AF as a key mechanism causing atrial dystrophin and nNOS depletion, which in turn contributes to the atrial phenotype begetting this arrhythmia. miR-31 may therefore represent a potential therapeutic target in AF.


Journal of the American Heart Association | 2016

Tetrahydrobiopterin protects against hypertrophic heart disease independent of myocardial nitric oxide synthase coupling

Toru Hashimoto; Vidhya Sivakumaran; Ricardo Carnicer; Guangshuo Zhu; Virginia Shalkey Hahn; Djahida Bedja; Alice Recalde; Drew Duglan; Keith M. Channon; Barbara Casadei; David A. Kass

Background Nitric oxide synthase uncoupling occurs under conditions of oxidative stress modifying the enzymes function so it generates superoxide rather than nitric oxide. Nitric oxide synthase uncoupling occurs with chronic pressure overload, and both are ameliorated by exogenous tetrahydrobiopterin (BH4)—a cofactor required for normal nitric oxide synthase function—supporting a pathophysiological link. Genetically augmenting BH4 synthesis in endothelial cells fails to replicate this benefit, indicating that other cell types dominate the effects of exogenous BH4 administration. We tested whether the primary cellular target of BH4 is the cardiomyocyte or whether other novel mechanisms are invoked. Methods and Results Mice with cardiomyocyte‐specific overexpression of GTP cyclohydrolase 1 (mGCH1) and wild‐type littermates underwent transverse aortic constriction. The mGCH1 mice had markedly increased myocardial BH4 and, unlike wild type, maintained nitric oxide synthase coupling after transverse aortic constriction; however, the transverse aortic constriction–induced abnormalities in cardiac morphology and function were similar in both groups. In contrast, exogenous BH4 supplementation improved transverse aortic constricted hearts in both groups, suppressed multiple inflammatory cytokines, and attenuated infiltration of inflammatory macrophages into the heart early after transverse aortic constriction. Conclusions BH4 protection against adverse remodeling in hypertrophic cardiac disease is not driven by its prevention of myocardial nitric oxide synthase uncoupling, as presumed previously. Instead, benefits from exogenous BH4 are mediated by a protective effect coupled to suppression of inflammatory pathways and myocardial macrophage infiltration.


The Lancet | 2015

Evaluation of the role of miR-31-dependent reduction in dystrophin and nNOS on atrial-fibrillation-induced electrical remodelling in man.

Svetlana Reilly; Xing Liu; Ricardo Carnicer; Timothy Rajakumar; Rana Sayeed; George Krasopoulos; Sander Verheule; Tudor A. Fulga; Ulrich Schotten; Barbara Casadei

BACKGROUNDnThe management of atrial fibrillation remains a challenge. This condition remodels atrial electrical properties, which promote resistance to treatment. Although remodelling has long been a therapeutic target in atrial fibrillation, its causes remain incompletely understood. We aimed to evaluate the role of miR-31-dependent reduction in dystrophin and neuronal nitric oxide synthase (nNOS, also known as NOS1) on atrial electrical properties and atrial fibrillation inducibility.nnnMETHODSnWe recruited 258 patients (209 patients in sinus rhythm and 49 with permanent atrial fibrillation) from the John Radcliffe Hospital, Oxford, UK; written informed consent was obtained from each participant. We also used a goat model of pacing-induced atrial fibrillation (24 with atrial fibrillation vs 20 controls in normal sinus rythm) and nNos-knock-out mice (n=28 compared with 27 wild-type littermates). Gene expression of miR-31, dystrophin, and nNOS was assessed by quantitative RT-PCR; protein content was measured by immunoblotting; NOS activity was evaluated with high-performance liquid chromatography; action potential duration (APD) and rate dependent adaptation were assessed by single-cell patch-clamping, and atrial fibrillation inducibility was evaluated by transoesophageal atrial burst stimulation.nnnFINDINGSnWe found that atrial-specific upregulation of miR-31 in human atrial fibrillation caused dystrophin (DYS) translational repression and accelerated mRNA degradation of nNOS leading to a profound reduction in atrial DYS and nNOS protein content and in nitric oxide availability. In human atrial myocytes obtained from patients in sinus rhythm, nNOS inhibition was sufficient to recapitulate hallmark features of remodelling induced by atrial fibrillation, such as shortening of APD and loss of APD rate-dependency, but had no effect in patients with atrial fibrillation. In mice, nNos gene deletion or inhibition shortened atrial APD and increased atrial fibrillation inducibility in vivo. Inhibition of miR-31 in human atrial fibrillation recovered DYS and nNOS, and normalised APD and APD rate-dependency. Prevention of miR-31 binding to nNOS 3UTR recovered both nNOS protein and gene expression but had no effect on the DYS protein or mRNA level (consistent with the mRNA degradation of nNOS by miR-31). Prevention of miR-31 binding to DYS 3UTR increased DYS protein but not mRNA is consistent with translation repression of DYS by miR-31; recovery of DYS protein increased nNOS protein but not mRNA in keeping with a stabilising effect of DYS on nNOS protein. In goats, a reduction in dystrophin and nNOS protein content was associated with upregulation of miR-31 in the atria but not in the ventricles.nnnINTERPRETATIONnThe findings suggest that atrial-specific upregulation of miR-31 in human atrial fibrillation is a key mechanism causing atrial loss of dystrophin and nNOS; this loss leads to the electrical phenotype induced by atrial fibrillation.nnnFUNDINGnBritish Heart Foundation (BHF) Programme grant (for BC and XL), BHF Centre of Excellence in Oxford (SR), Leducq Foundation (in part for BC and SR), the European Unions seventh Framework Programme Grant Agree.


Cardiovascular Research | 2017

The subcellular localization of neuronal nitric oxide synthase determines the downstream effects of NO on myocardial function

Ricardo Carnicer; Silvia Suffredini; Xing Liu; Svetlana Reilly; Jillian N. Simon; Nicoletta C. Surdo; Yin H. Zhang; Craig A. Lygate; Keith M. Channon; Barbara Casadei

Aims In healthy hearts, the neuronal nitric oxide synthase (nNOS) is predominantly localized to the sarcoplasmic reticulum (SR), where it regulates the ryanodine receptor Ca2+u2009release channel (RyR2) and phospholamban (PLB) phosphorylation, and to a lesser extent to the sarcolemmal membrane where it inhibits the L-type Ca2+u2009current (ICa). However, in failing hearts, impaired relaxation and depressed inotropy are associated with a larger proportion of nNOS being localized to the sarcolemmal membrane. Whether there is a causal relationship between altered myocardial function and subcellular localization of nNOS remains to be assessed. Methods and results Adenoviruses (AdV) encoding for a human nNOS.eGFP fusion protein or eGFP were injected into the left ventricle (LV) of nNOS−/− mice. nNOS.eGFP localized to the sarcolemmal and t-tubular membrane and immunoprecipitated with syntrophin and caveolin-3 but not with RyR2. Myocardial transduction of nNOS.eGFP resulted in a significantly increased NOS activity (10-fold, P < 0.01), a 20% increase in myocardial tetrahydrobiopterin (BH4) (P < 0.05), and a 30% reduction in superoxide production (P < 0.001). LV myocytes transduced with nNOS.eGFP showed a significantly lower basal and &bgr;-adrenergic stimulated ICa, [Ca2+]i transient amplitude and cell shortening (vs. eGFP). All differences between groups were abolished after NOS inhibition. In contrast, nNOS.eGFP had no effect on RyR nitrosylation, PLB phosphorylation or the rate of myocardial relaxation and [Ca2+]i decay. Conclusion Our findings indicate that nNOS-mediated regulation of myocardial excitation–contraction (E–C) coupling is exquisitely dependent on nNOS subcellular localization and suggests a partially adaptive role for sarcolemmal nNOS in the human failing myocardium.


Scientific Reports | 2016

Human Ischemic Cardiomyopathy Shows Cardiac Nos1 Translocation and its Increased Levels are Related to Left Ventricular Performance

E. Roselló-Lletí; Ricardo Carnicer; Estefanía Tarazón; Ana Ortega; Carolina Gil-Cayuela; Francisca Lago; José Ramón González-Juanatey; M. Portolés; Miguel Rivera

The role of nitric oxide synthase 1 (NOS1) as a major modulator of cardiac function has been extensively studied in experimental models; however, its role in human ischemic cardiomyopathy (ICM) has never been analysed. Thus, the objectives of this work are to study NOS1 and NOS-related counterparts involved in regulating physiological function of myocyte, to analyze NOS1 localisation, activity, dimerisation, and its relationship with systolic function in ICM. The study has been carried out on left ventricular tissue obtained from explanted human hearts. Here we demonstrate that the upregulation of cardiac NOS1 is not accompanied by an increase in NOS activity, due in part to the alterations found in molecules involved in the regulation of its activity. We observed partial translocation of NOS1 to the sarcolemma in ischemic hearts, and a direct relationship between its protein levels and systolic ventricular function. Our findings indicate that NOS1 may be significant in the pathophysiology of human ischemic heart disease with a preservative role in maintaining myocardial homeostasis.


Methods of Molecular Biology | 2015

Adenoviral transduction of FRET-based biosensors for cAMP in primary adult mouse cardiomyocytes.

Oliver Lomas; Marcella Brescia; Ricardo Carnicer; Stefania Monterisi; Nicoletta C. Surdo; Manuela Zaccolo

Genetically encoded biosensors that make use of fluorescence resonance energy transfer (FRET) are important tools for the study of compartmentalized cyclic nucleotide signaling in living cells. With the advent of germ line and tissue-specific transgenic technologies, the adult mouse represents a useful tool for the study of cardiovascular pathophysiology. The use of FRET-based genetically encoded biosensors coupled with this animal model represents a powerful combination for the study of cAMP signaling in live primary cardiomyocytes. In this chapter, we describe the steps required during the isolation, viral transduction, and culture of cardiomyocytes from an adult mouse to obtain reliable expression of genetically encoded FRET biosensors for the study of cAMP signaling in living cells.

Collaboration


Dive into the Ricardo Carnicer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xing Liu

University of Oxford

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashley B. Hale

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge