Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ricardo González-Ramírez is active.

Publication


Featured researches published by Ricardo González-Ramírez.


Journal of Cellular Biochemistry | 2008

Nuclear and nuclear envelope localization of dystrophin Dp71 and dystrophin‐associated proteins (DAPs) in the C2C12 muscle cells: DAPs nuclear localization is modulated during myogenesis

Ricardo González-Ramírez; Sara Luz Morales‐Lázaro; Victor Tapia-Ramírez; Dominique Mornet; Bulmaro Cisneros

Dystrophin and dystrophin‐associated proteins (DAPs) form a complex around the sarcolemma, which gives stability to the sarcolemma and leads signal transduction. Recently, the nuclear presence of dystrophin Dp71 and DAPs has been revealed in different non‐muscle cell types, opening the possibility that these proteins could also be present in the nucleus of muscle cells. In this study, we analyzed by Immunofluorescence assays and Immunoblotting analysis of cell fractions the subcellular localization of Dp71 and DAPs in the C2C12 muscle cell line. We demonstrated the presence of Dp71, α‐sarcoglycan, α‐dystrobrevin, β‐dystroglycan and α‐syntrophin not only in plasma membrane but also in the nucleus of muscle cells. In addition, we found by Immunoprecipitation assays that these proteins form a nuclear complex. Interestingly, myogenesis modulates the presence and/or relative abundance of DAPs in the plasma membrane and nucleus as well as the composition of the nuclear complex. Finally, we demonstrated the presence of Dp71, α‐sarcoglycan, β‐dystroglycan, α‐dystrobrevin and α‐syntrophin in the C2C12 nuclear envelope fraction. Interestingly, α‐sarcoglycan and β‐dystroglycan proteins showed enrichment in the nuclear envelope, compared with the nuclear fraction, suggesting that they could function as inner nuclear membrane proteins underlying the secondary association of Dp71 and the remaining DAPs to the nuclear envelope. Nuclear envelope localization of Dp71 and DAPs might be involved in the nuclear envelope‐associated functions, such as nuclear structure and modulation of nuclear processes. J. Cell. Biochem. 105: 735–745, 2008.


Stem Cells and Development | 2013

Characterization of Mesenchymal Stem Cell Subpopulations from Human Amniotic Membrane with Dissimilar Osteoblastic Potential

Margarita Leyva-Leyva; Lourdes Barrera; César López-Camarillo; Lourdes Arriaga-Pizano; Gabriel Orozco-Hoyuela; Erika M. Carrillo-Casas; Jaime Calderón-Pérez; Annia López-Díaz; Felipe Hernandez-Aguilar; Ricardo González-Ramírez; Simón Kawa; Jesús Chimal-Monroy; Lizeth Fuentes-Mera

Human fetal mesenchymal stem cells can be isolated from the amniotic membrane (AM-hMSCs) by enzymatic digestion. The biological properties of this cell population have been characterized; however, few studies have focused on the presence of stem cell subpopulations and their differentiation potential. The aim of the present study was to isolate homogeneous AM-hMSC subpopulations based on the coexpression of surface markers. In addition, we aimed to characterize stem cell subpopulations through the detection of typical stem cell markers and its differentiation potential. In this study, fluorescence-activated cell sorting (FACS) was used to positively select for the surface markers CD44, CD73, and CD105. Two subpopulations were isolated: CD44+ / CD73+ / CD105+ (CD105+), and CD44+ / CD73+ / CD105- (CD105-). To characterize the cell subpopulations, the expression of pluripotency-associated markers was analyzed by reverse transcriptase-polymerase chain reaction and immunofluorescence. Our results showed positive expression of SOX2, SOX3, PAX6, OCT3/4, and NANOG in the CD105+ and CD105(-) cell subpopulations. In contrast, we did not detect expression of SSEA4 or FOXD3 in either subpopulation. Immunophenotypes, such as mesenchymal and hematopoietic markers, were studied by FACS analyses. Our data revealed the expression of the CD49a, CD49d, CD29, integrin α9β1, CD44, CD73, and CD105 antigens in both subpopulations. In contrast, CD90, CD45, CD34, CD14, and HLA-DR expression was not detected. The ability of both subpopulations to differentiate into osteoblasts, adipocytes, and chondrocytes was evidenced using Alizarin red, Oil-Red, and Alcian blue staining, respectively. Furthermore, neuronal differentiation was demonstrated by the expression of GFAP and NEURO-D. Interestingly, we observed a dissimilar osteoblastic differentiation potential between the subpopulations. CD105- cells showed stronger expression of secreted protein acidic and rich in cysteine (SPARC) and osteonectin, which was associated with more effective calcium deposition, than CD105+ cells. In conclusion, we described a systematic method for the isolation of hMSCs that was highly reproducible and generated homogeneous cultures for osteoblast differentiation with an efficient capacity for mineralization.


Apoptosis | 2012

GAS1 induces cell death through an intrinsic apoptotic pathway

Natanael Zarco; Ricardo González-Ramírez; Rosa O. González; José Segovia

Growth Arrest Specific 1 (GAS1) is a protein expressed when cells are arrested and during development. When ectopically expressed, GAS1 induces cell arrest and apoptosis of different cell lines, and we have previously demonstrated that the apoptotic process set off by GAS1 is caused by its capacity inhibiting the GDNF-mediated intracellular survival signaling. In the present work, we have dissected the molecular pathway leading to cell death. We employed the SH-SY5Y human neuroblastoma cell line that expresses GAS1 when deprived of serum. We observed, as we have previously described, that the presence of GAS1 reduces RET phosphorylation and inhibits the activation of AKT. We have now determined that the presence of GAS1 also triggers the dephosphorylation of BAD, which, in turn, provokes the release of Cytochrome-c from the mitochondria to the cytosol activating caspase-9, prompting the activity of caspase-3 and resulting in apoptosis of the cells. The apoptotic process is intrinsic, because there is no activation of caspase-8, thus this is consistent with apoptosis induced by the lack of trophic support. Interestingly, in cells where GAS1 has been silenced there is a significant delay in the onset of apoptosis.


Journal of Biological Chemistry | 2011

Functional Coupling of Rab3-interacting Molecule 1 (RIM1) and L-type Ca2+ Channels in Insulin Release

María A. Gandini; Alejandro Sandoval; Ricardo González-Ramírez; Yasuo Mori; Michel De Waard; Ricardo Felix

Insulin release by pancreatic β-cells is regulated by diverse intracellular signals, including changes in Ca2+ concentration resulting from Ca2+ entry through voltage-gated (CaV) channels. It has been reported that the Rab3 effector RIM1 acts as a functional link between neuronal CaV channels and the machinery for exocytosis. Here, we investigated whether RIM1 regulates recombinant and native L-type CaV channels (that play a key role in hormone secretion) and whether this regulation affects insulin release. Whole-cell patch clamp currents were recorded from HEK-293 and insulinoma RIN-m5F cells. RIM1 and CaV channel expression was identified by RT-PCR and Western blot. RIM1-CaV channel interaction was determined by co-immunoprecipitation. Knockdown of RIM1 and CaV channel subunit expression were performed using small interference RNAs. Insulin release was assessed by ELISA. Co-expression of CaV1.2 and CaV1.3 L-type channels with RIM1 in HEK-293 cells revealed that RIM1 may not determine the availability of L-type CaV channels but decreases the rate of inactivation of the whole cell currents. Co-immunoprecipitation experiments showed association of the CaVβ auxiliary subunit with RIM1. The lack of CaVβ expression suppressed channel regulation by RIM1. Similar to the heterologous system, an increase of current inactivation was observed upon knockdown of endogenous RIM1. Co-immunoprecipitation showed association of CaVβ and RIM1 in insulin-secreting RIN-m5F cells. Knockdown of RIM1 notably impaired high K+-stimulated insulin secretion in the RIN-m5F cells. These data unveil a novel functional coupling between RIM1 and the L-type CaV channels via the CaVβ auxiliary subunit that contribute to determine insulin secretion.


Cell Calcium | 2012

Identification of a disulfide bridge essential for structure and function of the voltage-gated Ca2+ channel α2δ-1 auxiliary subunit

Aida Calderón-Rivera; Arturo Andrade; Oscar Hernández-Hernández; Ricardo González-Ramírez; Alejandro Sandoval; Manuel Rivera; Juan Carlos Gomora; Ricardo Felix

Voltage-gated calcium (Ca(V)) channels are transmembrane proteins that form Ca(2+)-selective pores gated by depolarization and are essential regulators of the intracellular Ca(2+) concentration. By providing a pathway for rapid Ca(2+) influx, Ca(V) channels couple membrane depolarization to a wide array of cellular responses including neurotransmission, muscle contraction and gene expression. Ca(V) channels fall into two major classes, low voltage-activated (LVA) and high voltage-activated (HVA). The ion-conducting pathway of HVA channels is the α(1) subunit, which typically contains associated β and α(2)δ ancillary subunits that regulate the properties of the channel. Although it is widely acknowledged that α(2)δ-1 is post-translationally cleaved into an extracellular α(2) polypeptide and a membrane-anchored δ protein that remain covalently linked by disulfide bonds, to date the contribution of different cysteine (Cys) residues to the formation of disulfide bridges between these proteins has not been investigated. In the present report, by predicting disulfide connectivity with bioinformatics, molecular modeling and protein biochemistry experiments we have identified two Cys residues involved in the formation of an intermolecular disulfide bond of critical importance for the structure and function of the α(2)δ-1 subunit. Site directed-mutagenesis of Cys404 (located in the von Willebrand factor-A region of α(2)) and Cys1047 (in the extracellular domain of δ) prevented the association of the α(2) and δ peptides upon proteolysis, suggesting that the mature protein is linked by a single intermolecular disulfide bridge. Furthermore, co-expression of mutant forms of α(2)δ-1 Cys404Ser and Cys1047Ser with recombinant neuronal N-type (Ca(V)2.2α(1)/β(3)) channels, showed decreased whole-cell patch-clamp currents indicating that the disulfide bond between these residues is required for α(2)δ-1 function.


Biochimica et Biophysica Acta | 2013

A role for β-dystroglycan in the organization and structure of the nucleus in myoblasts

Ivette Martínez-Vieyra; Alejandra Vásquez-Limeta; Ricardo González-Ramírez; Sara L. Morales-Lázaro; Mónica Mondragón; Ricardo Mondragón; Arturo Ortega; Steve J. Winder; Bulmaro Cisneros

We recently characterized a nuclear import pathway for β-dystroglycan; however, its nuclear role remains unknown. In this study, we demonstrate for the first time, the interaction of β-dystroglycan with distinct proteins from different nuclear compartments, including the nuclear envelope (NE) (emerin and lamins A/C and B1), splicing speckles (SC35), Cajal bodies (p80-coilin), and nucleoli (Nopp140). Electron microscopy analysis revealed that β-dystroglycan localized in the inner nuclear membrane, nucleoplasm, and nucleoli. Interestingly, downregulation of β-dystroglycan resulted in both mislocalization and decreased expression of emerin and lamin B1, but not lamin A/C, as well in disorganization of nucleoli, Cajal bodies, and splicing speckles with the concomitant decrease in the levels of Nopp140, and p80-coilin, but not SC35. Quantitative reverse transcription PCR and cycloheximide-mediated protein arrest assays revealed that β-dystroglycan deficiency did not change mRNA expression of NE proteins emerin and lamin B1 bud did alter their stability, accelerating protein turnover. Furthermore, knockdown of β-dystroglycan disrupted NE-mediated processes including nuclear morphology and centrosome-nucleus linkage, which provides evidence that β-dystroglycan association with NE proteins is biologically relevant. Unexpectedly, β-dystroglycan-depleted cells exhibited multiple centrosomes, a characteristic of cancerous cells. Overall, these findings imply that β-dystroglycan is a nuclear scaffolding protein involved in nuclear organization and NE structure and function, and that might be a contributor to the biogenesis of nuclear envelopathies.


Journal of Biological Chemistry | 2014

Structural determinants of the transient receptor potential 1 (TRPV1) channel activation by phospholipid analogs.

Sara L. Morales-Lázaro; Barbara Serrano-Flores; Itzel Llorente; Enrique Hernández-García; Ricardo González-Ramírez; Souvik Banerjee; Duane D. Miller; Veeresh Gududuru; James I. Fells; Derek D. Norman; Gabor Tigyi; Diana Escalante-Alcalde; Tamara Rosenbaum

Background: The TRPV1 ion channel can be regulated by negatively charged lipids. Results: TRPV1 shows specificity for LPA analogs containing monounsaturated hydrocarbon chains with a negatively charged phosphate, cyclic phosphate, and thiophosphate headgroup. Conclusion: TRPV1 activation is highly restricted to natural lipids with oleyl or oleoyl side chains. Significance: Production of endogenous C18:1 lysophospholipids can selectively trigger activation of TRPV1 and nociceptive neuronal responses. The transient receptor potential vanilloid 1 (TRPV1) ion channel is a polymodal protein that responds to various stimuli, including capsaicin (the pungent compound found in chili peppers), extracellular acid, and basic intracellular pH, temperatures close to 42 °C, and several lipids. Lysophosphatidic acid (LPA), an endogenous lipid widely associated with neuropathic pain, is an agonist of the TRPV1 channel found in primary afferent nociceptors and is activated by other noxious stimuli. Agonists or antagonists of lipid and other chemical natures are known to possess specific structural requirements for producing functional effects on their targets. To better understand how LPA and other lipid analogs might interact and affect the function of TRPV1, we set out to determine the structural features of these lipids that result in the activation of TRPV1. By changing the acyl chain length, saturation, and headgroup of these LPA analogs, we established strict requirements for activation of TRPV1. Among the natural LPA analogs, we found that only LPA 18:1, alkylglycerophosphate 18:1, and cyclic phosphatidic acid 18:1, all with a monounsaturated C18 hydrocarbon chain activate TRPV1, whereas polyunsaturated and saturated analogs do not. Thus, TRPV1 shows a more restricted ligand specificity compared with LPA G-protein-coupled receptors. We synthesized fatty alcohol phosphates and thiophosphates and found that many of them with a single double bond in position Δ9, 10, or 11 and Δ9 cyclopropyl group can activate TRPV1 with efficacy similar to capsaicin. Finally, we developed a pharmacophore and proposed a mechanistic model for how these lipids could induce a conformational change that activates TRPV1.


Biochimica et Biophysica Acta | 2012

Familial hemiplegic migraine type 1 mutations W1684R and V1696I alter G protein-mediated regulation of CaV2.1 voltage-gated calcium channels

Edgar Garza-López; Alejandro Sandoval; Ricardo González-Ramírez; María A. Gandini; Arn M. J. M. van den Maagdenberg; Michel De Waard; Ricardo Felix

Familial hemiplegic migraine type 1 (FHM-1) is a monogenic form of migraine with aura that is characterized by recurrent attacks of a typical migraine headache with transient hemiparesis during the aura phase. In a subset of patients, additional symptoms such as epilepsy and cerebellar ataxia are part of the clinical phenotype. FHM-1 is caused by missense mutations in the CACNA1A gene that encodes the pore-forming subunit of Ca(V)2.1 voltage-gated Ca(2+) channels. Although the functional effects of an increasing number of FHM-1 mutations have been characterized, knowledge on the influence of most of these mutations on G protein regulation of channel function is lacking. Here, we explored the effects of G protein-dependent modulation on mutations W1684R and V1696I which cause FHM-1 with and without cerebellar ataxia, respectively. Both mutations were introduced into the human Ca(V)2.1α(1) subunit and their functional consequences investigated after heterologous expression in human embryonic kidney 293 (HEK-293) cells using patch-clamp recordings. When co-expressed along with the human μ-opioid receptor, application of the agonist [d-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) inhibited currents through both wild-type (WT) and mutant Ca(V)2.1 channels, which is consistent with the known modulation of these channels by G protein-coupled receptors. Prepulse facilitation, which is a way to characterize the relief of direct voltage-dependent G protein regulation, was reduced by both FHM-1 mutations. Moreover, the kinetic analysis of the onset and decay of facilitation showed that the W1684R and V1696I mutations affect the apparent dissociation and reassociation rates of the Gβγ dimer from the channel complex, suggesting that the G protein-Ca(2+) channel affinity may be altered by the mutations. These biophysical studies may shed new light on the pathophysiology underlying FHM-1.


Biochemical and Biophysical Research Communications | 2011

Tonic inhibition in spinal ventral horn interneurons mediated by α5 subunit-containing GABAA receptors

Alberto Castro; Justo Aguilar; Ricardo González-Ramírez; Emanuel Loeza-Alcocer; Martha Canto-Bustos; Ricardo Felix; Rodolfo Delgado-Lezama

GABA(A) receptors mediate synaptic and tonic inhibition in many neurons of the central nervous system. These receptors can be constructed from a range of different subunits deriving from seven identified families. Among these subunits, α(5) has been shown to mediate GABAergic tonic inhibitory currents in neurons from supraspinal nuclei. Likewise, immunohistochemical and in situ hybridization studies have shown the presence of the α(5) subunit in spinal cord neurons, though almost nothing is known about its function. In the present report, using slices of the adult turtle spinal cord as a model system we have recorded a tonic inhibitory current in ventral horn interneurons (VHIs) and determined the functional contribution of the α(5) subunit-containing GABA(A) receptors to this current. Patch clamp studies show that the GABAergic tonic inhibitory current in VHIs is not affected by the application of antagonists of the α(4/6) subunit-containing GABA(A) receptors, but is sensitive to L-655708, an antagonist of the GABA(A) receptors containing α(5) subunits. Last, by using RT-PCR and immunohistochemistry we confirmed the expression of the α(5) subunit in the turtle spinal cord. Together, these results suggest that GABA(A) receptors containing the α(5) subunit mediate the tonic inhibitory currents observed in VHIs.


Journal of Neurochemistry | 2010

Induction of dystrophin Dp71 expression during neuronal differentiation: opposite roles of Sp1 and AP2α in Dp71 promoter activity

Sara Luz Morales‐Lázaro; Ricardo González-Ramírez; Pablo Gómez; Victor Tapia-Ramírez; Mario Bermúdez de León; Bulmaro Cisneros

In this study, we delineated the molecular mechanisms that modulate Dp71 expression during neuronal differentiation, using the N1E‐115 cell line. We demonstrated that Dp71 expression is up‐regulated in response to cAMP‐mediated neuronal differentiation of these cells, and that this induction is controlled at promoter level. Functional deletion analysis of the Dp71 promoter revealed that a 5′‐flanking 159‐bp DNA fragment that contains Sp1 and AP2 binding sites is necessary and sufficient for basal expression of this TATA‐less promoter, as well as for its induction during neuronal differentiation. Electrophoretic mobility shift and chromatin immunoprecipitation assays revealed that Sp1 and AP2α bind to their respective DNA elements within the Dp71 basal promoter. Overall, mutagenesis assays on the Sp1 and AP2 binding sites, over‐expression of Sp1 and AP2α, as well as knock‐down experiments on Sp1 and AP2α gene expression established that Dp71 basal expression is controlled by the combined action of Sp1 and AP2α, which act as activator and repressor, respectively. Furthermore, we demonstrated that induction of Dp71 expression in differentiated cells is the result of the maintenance of positive regulation exerted by Sp1, as well as of the loss of AP2α binding, which ultimately releases the promoter from repression.

Collaboration


Dive into the Ricardo González-Ramírez's collaboration.

Top Co-Authors

Avatar

Ricardo Felix

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

Alejandro Sandoval

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

María A. Gandini

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

Rodolfo Delgado-Lezama

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

Sara L. Morales-Lázaro

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Eduardo Monjaraz

Benemérita Universidad Autónoma de Puebla

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emanuel Loeza-Alcocer

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

Itzel Llorente

National Autonomous University of Mexico

View shared research outputs
Researchain Logo
Decentralizing Knowledge