Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ricardo H. Ramirez-Gonzalez is active.

Publication


Featured researches published by Ricardo H. Ramirez-Gonzalez.


Genome Research | 2011

Assemblathon 1: A competitive assessment of de novo short read assembly methods

Dent Earl; Keith Bradnam; John St. John; Aaron E. Darling; Dawei Lin; Joseph Fass; Hung On Ken Yu; Vince Buffalo; Daniel R. Zerbino; Mark Diekhans; Ngan Nguyen; Pramila Ariyaratne; Wing-Kin Sung; Zemin Ning; Matthias Haimel; Jared T. Simpson; Nuno A. Fonseca; Inanc Birol; T. Roderick Docking; Isaac Ho; Daniel S. Rokhsar; Rayan Chikhi; Dominique Lavenier; Guillaume Chapuis; Delphine Naquin; Nicolas Maillet; Michael C. Schatz; David R. Kelley; Adam M. Phillippy; Sergey Koren

Low-cost short read sequencing technology has revolutionized genomics, though it is only just becoming practical for the high-quality de novo assembly of a novel large genome. We describe the Assemblathon 1 competition, which aimed to comprehensively assess the state of the art in de novo assembly methods when applied to current sequencing technologies. In a collaborative effort, teams were asked to assemble a simulated Illumina HiSeq data set of an unknown, simulated diploid genome. A total of 41 assemblies from 17 different groups were received. Novel haplotype aware assessments of coverage, contiguity, structure, base calling, and copy number were made. We establish that within this benchmark: (1) It is possible to assemble the genome to a high level of coverage and accuracy, and that (2) large differences exist between the assemblies, suggesting room for further improvements in current methods. The simulated benchmark, including the correct answer, the assemblies, and the code that was used to evaluate the assemblies is now public and freely available from http://www.assemblathon.org/.


Genome Research | 2017

An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations

Bernardo Clavijo; Luca Venturini; Christian Schudoma; Gonzalo Garcia Accinelli; Gemy Kaithakottil; Jonathan Wright; Philippa Borrill; George Kettleborough; Darren Heavens; Helen D. Chapman; James Lipscombe; Tom Barker; Fu-Hao Lu; Neil McKenzie; Dina Raats; Ricardo H. Ramirez-Gonzalez; Aurore Coince; Ned Peel; Lawrence Percival-Alwyn; Owen Duncan; Josua Trösch; Guotai Yu; Dan Bolser; Guy Namaati; Arnaud Kerhornou; Manuel Spannagl; Heidrun Gundlach; Georg Haberer; Robert Davey; Christine Fosker

Advances in genome sequencing and assembly technologies are generating many high-quality genome sequences, but assemblies of large, repeat-rich polyploid genomes, such as that of bread wheat, remain fragmented and incomplete. We have generated a new wheat whole-genome shotgun sequence assembly using a combination of optimized data types and an assembly algorithm designed to deal with large and complex genomes. The new assembly represents >78% of the genome with a scaffold N50 of 88.8 kb that has a high fidelity to the input data. Our new annotation combines strand-specific Illumina RNA-seq and Pacific Biosciences (PacBio) full-length cDNAs to identify 104,091 high-confidence protein-coding genes and 10,156 noncoding RNA genes. We confirmed three known and identified one novel genome rearrangements. Our approach enables the rapid and scalable assembly of wheat genomes, the identification of structural variants, and the definition of complete gene models, all powerful resources for trait analysis and breeding of this key global crop.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Uncovering hidden variation in polyploid wheat

Ksenia V. Krasileva; Hans A. Vasquez-Gross; Tyson Howell; Paul Bailey; Francine Paraiso; Leah Clissold; James Simmonds; Ricardo H. Ramirez-Gonzalez; Xiaodong Wang; Philippa Borrill; Christine Fosker; Sarah Ayling; Andrew Phillips; Cristobal Uauy; Jorge Dubcovsky

Significance Pasta and bread wheat are polyploid species that carry multiple copies of each gene. Therefore, loss-of-function mutations in one gene copy are frequently masked by functional copies on other genomes. We sequenced the protein coding regions of 2,735 mutant lines and developed a public database including more than 10 million mutations. Researchers and breeders can search this database online, identify mutations in the different copies of their target gene, and request seeds to study gene function or improve wheat varieties. Mutations are being used to improve the nutritional value of wheat, increase the size of the wheat grains, and generate additional variability in flowering genes to improve wheat adaptation to new and changing environments. Comprehensive reverse genetic resources, which have been key to understanding gene function in diploid model organisms, are missing in many polyploid crops. Young polyploid species such as wheat, which was domesticated less than 10,000 y ago, have high levels of sequence identity among subgenomes that mask the effects of recessive alleles. Such redundancy reduces the probability of selection of favorable mutations during natural or human selection, but also allows wheat to tolerate high densities of induced mutations. Here we exploited this property to sequence and catalog more than 10 million mutations in the protein-coding regions of 2,735 mutant lines of tetraploid and hexaploid wheat. We detected, on average, 2,705 and 5,351 mutations per tetraploid and hexaploid line, respectively, which resulted in 35–40 mutations per kb in each population. With these mutation densities, we identified an average of 23–24 missense and truncation alleles per gene, with at least one truncation or deleterious missense mutation in more than 90% of the captured wheat genes per population. This public collection of mutant seed stocks and sequence data enables rapid identification of mutations in the different copies of the wheat genes, which can be combined to uncover previously hidden variation. Polyploidy is a central phenomenon in plant evolution, and many crop species have undergone recent genome duplication events. Therefore, the general strategy and methods developed herein can benefit other polyploid crops.


PLOS Pathogens | 2012

Evolution of an Eurasian Avian-like Influenza Virus in Naïve and Vaccinated Pigs

Pablo R. Murcia; Joseph Hughes; Patrizia Battista; Lucy Lloyd; Gregory J. Baillie; Ricardo H. Ramirez-Gonzalez; Doug Ormond; K. Oliver; Debra Elton; Jennifer A. Mumford; Mario Caccamo; Paul Kellam; Bryan T. Grenfell; Edward C. Holmes; J. L. N. Wood

Influenza viruses are characterized by an ability to cross species boundaries and evade host immunity, sometimes with devastating consequences. The 2009 pandemic of H1N1 influenza A virus highlights the importance of pigs in influenza emergence, particularly as intermediate hosts by which avian viruses adapt to mammals before emerging in humans. Although segment reassortment has commonly been associated with influenza emergence, an expanded host-range is also likely to be associated with the accumulation of specific beneficial point mutations. To better understand the mechanisms that shape the genetic diversity of avian-like viruses in pigs, we studied the evolutionary dynamics of an Eurasian Avian-like swine influenza virus (EA-SIV) in naïve and vaccinated pigs linked by natural transmission. We analyzed multiple clones of the hemagglutinin 1 (HA1) gene derived from consecutive daily viral populations. Strikingly, we observed both transient and fixed changes in the consensus sequence along the transmission chain. Hence, the mutational spectrum of intra-host EA-SIV populations is highly dynamic and allele fixation can occur with extreme rapidity. In addition, mutations that could potentially alter host-range and antigenicity were transmitted between animals and mixed infections were commonplace, even in vaccinated pigs. Finally, we repeatedly detected distinct stop codons in virus samples from co-housed pigs, suggesting that they persisted within hosts and were transmitted among them. This implies that mutations that reduce viral fitness in one host, but which could lead to fitness benefits in a novel host, can circulate at low frequencies.


Genome Biology | 2015

Field pathogenomics reveals the emergence of a diverse wheat yellow rust population

Amelia Hubbard; C. M. Lewis; Kentaro Yoshida; Ricardo H. Ramirez-Gonzalez; Claude de Vallavieille-Pope; Jane Thomas; Sophien Kamoun; Rosemary Bayles; Cristobal Uauy; Diane G. O. Saunders

BackgroundEmerging and re-emerging pathogens imperil public health and global food security. Responding to these threats requires improved surveillance and diagnostic systems. Despite their potential, genomic tools have not been readily applied to emerging or re-emerging plant pathogens such as the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp. tritici (PST). This is due largely to the obligate parasitic nature of PST, as culturing PST isolates for DNA extraction remains slow and tedious.ResultsTo counteract the limitations associated with culturing PST, we developed and applied a field pathogenomics approach by transcriptome sequencing infected wheat leaves collected from the field in 2013. This enabled us to rapidly gain insights into this emerging pathogen population. We found that the PST population across the United Kingdom (UK) underwent a major shift in recent years. Population genetic structure analyses revealed four distinct lineages that correlated to the phenotypic groups determined through traditional pathology-based virulence assays. Furthermore, the genetic diversity between members of a single population cluster for all 2013 PST field samples was much higher than that displayed by historical UK isolates, revealing a more diverse population of PST.ConclusionsOur field pathogenomics approach uncovered a dramatic shift in the PST population in the UK, likely due to a recent introduction of a diverse set of exotic PST lineages. The methodology described herein accelerates genetic analysis of pathogen populations and circumvents the difficulties associated with obligate plant pathogens. In principle, this strategy can be widely applied to a variety of plant pathogens.


Nature | 2017

Genome sequence and genetic diversity of European ash trees

Elizabeth Sollars; Andrea L. Harper; Laura J. Kelly; Christine Sambles; Ricardo H. Ramirez-Gonzalez; David Swarbreck; Gemy Kaithakottil; Endymion D. Cooper; Cristobal Uauy; Lenka Havlickova; Gemma Worswick; David J. Studholme; Jasmin Zohren; Deborah L. Salmon; Bernardo Clavijo; Yi Li; Zhesi He; Alison Fellgett; Lea Vig McKinney; Lene Rostgaard Nielsen; Gerry C. Douglas; Erik Dahl Kjær; J. Allan Downie; David Boshier; S. L. Lee; Jo Clark; Murray Grant; Ian Bancroft; Mario Caccamo; Richard J. A. Buggs

Ash trees (genus Fraxinus, family Oleaceae) are widespread throughout the Northern Hemisphere, but are being devastated in Europe by the fungus Hymenoscyphus fraxineus, causing ash dieback, and in North America by the herbivorous beetle Agrilus planipennis. Here we sequence the genome of a low-heterozygosity Fraxinus excelsior tree from Gloucestershire, UK, annotating 38,852 protein-coding genes of which 25% appear ash specific when compared with the genomes of ten other plant species. Analyses of paralogous genes suggest a whole-genome duplication shared with olive (Olea europaea, Oleaceae). We also re-sequence 37 F. excelsior trees from Europe, finding evidence for apparent long-term decline in effective population size. Using our reference sequence, we re-analyse association transcriptomic data, yielding improved markers for reduced susceptibility to ash dieback. Surveys of these markers in British populations suggest that reduced susceptibility to ash dieback may be more widespread in Great Britain than in Denmark. We also present evidence that susceptibility of trees to H. fraxineus is associated with their iridoid glycoside levels. This rapid, integrated, multidisciplinary research response to an emerging health threat in a non-model organism opens the way for mitigation of the epidemic.


Frontiers in Genetics | 2013

Sequencing quality assessment tools to enable data-driven informatics for high throughput genomics.

Richard M. Leggett; Ricardo H. Ramirez-Gonzalez; Bernardo Clavijo; Darren Waite; Robert Davey

The processes of quality assessment and control are an active area of research at The Genome Analysis Centre (TGAC). Unlike other sequencing centers that often concentrate on a certain species or technology, TGAC applies expertise in genomics and bioinformatics to a wide range of projects, often requiring bespoke wet lab and in silico workflows. TGAC is fortunate to have access to a diverse range of sequencing and analysis platforms, and we are at the forefront of investigations into library quality and sequence data assessment. We have developed and implemented a number of algorithms, tools, pipelines and packages to ascertain, store, and expose quality metrics across a number of next-generation sequencing platforms, allowing rapid and in-depth cross-platform Quality Control (QC) bioinformatics. In this review, we describe these tools as a vehicle for data-driven informatics, offering the potential to provide richer context for downstream analysis and to inform experimental design.


Plant Physiology | 2016

expVIP: a Customizable RNA-seq Data Analysis and Visualization Platform.

Philippa Borrill; Ricardo H. Ramirez-Gonzalez; Cristobal Uauy

expVIP is an adaptable platform to create an integrated gene expression interface for any species with a transcriptome assembly. The majority of transcriptome sequencing (RNA-seq) expression studies in plants remain underutilized and inaccessible due to the use of disparate transcriptome references and the lack of skills and resources to analyze and visualize these data. We have developed expVIP, an expression visualization and integration platform, which allows easy analysis of RNA-seq data combined with an intuitive and interactive interface. Users can analyze public and user-specified data sets with minimal bioinformatics knowledge using the expVIP virtual machine. This generates a custom Web browser to visualize, sort, and filter the RNA-seq data and provides outputs for differential gene expression analysis. We demonstrate expVIP’s suitability for polyploid crops and evaluate its performance across a range of biologically relevant scenarios. To exemplify its use in crop research, we developed a flexible wheat (Triticum aestivum) expression browser (www.wheat-expression.com) that can be expanded with user-generated data in a local virtual machine environment. The open-access expVIP platform will facilitate the analysis of gene expression data from a wide variety of species by enabling the easy integration, visualization, and comparison of RNA-seq data across experiments.


Bioinformatics | 2015

PolyMarker: A fast polyploid primer design pipeline

Ricardo H. Ramirez-Gonzalez; Cristobal Uauy; Mario Caccamo

Summary: The design of genetic markers is of particular relevance in crop breeding programs. Despite many economically important crops being polyploid organisms, the current primer design tools are tailored for diploid species. Bread wheat, for instance, is a hexaploid comprising of three related genomes and the performance of genetic markers is diminished if the primers are not genome specific. PolyMarker is a pipeline that generates SNP markers by selecting candidate primers for a specified genome using local alignments and standard primer design tools to test the viability of the primers. A command line tool and a web interface are available to the community. Availability and implementation: PolyMarker is available as a ruby BioGem: bio-polyploid-tools. Web interface: http://polymarker.tgac.ac.uk. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


Bioinformatics | 2012

Biogem : an effective tool-based approach for scaling up open source software development in bioinformatics

Raoul J. P. Bonnal; Jan Aerts; George Githinji; Naohisa Goto; Daniel MacLean; Chase A. Miller; Hiroyuki Mishima; Massimiliano Pagani; Ricardo H. Ramirez-Gonzalez; Geert Smant; Francesco Strozzi; Rob Syme; Rutger A. Vos; Trevor J. Wennblom; Ben J. Woodcroft; Toshiaki Katayama; Pjotr Prins

Summary: Biogem provides a software development environment for the Ruby programming language, which encourages community-based software development for bioinformatics while lowering the barrier to entry and encouraging best practices. Biogem, with its targeted modular and decentralized approach, software generator, tools and tight web integration, is an improved general model for scaling up collaborative open source software development in bioinformatics. Availability: Biogem and modules are free and are OSS. Biogem runs on all systems that support recent versions of Ruby, including Linux, Mac OS X and Windows. Further information at http://www.biogems.info. A tutorial is available at http://www.biogems.info/howto.html Contact: [email protected]

Collaboration


Dive into the Ricardo H. Ramirez-Gonzalez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge