Ricardo Londono
University of Pittsburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ricardo Londono.
Acta Biomaterialia | 2012
Bryan N. Brown; Ricardo Londono; Stephen Tottey; Li Zhang; Kathryn A. Kukla; Matthew T. Wolf; Kerry A. Daly; Janet E. Reing; Stephen F. Badylak
Macrophages have been classified as having plastic phenotypes which exist along a spectrum between M1 (classically activated; pro-inflammatory) and M2 (alternatively activated; regulatory, homeostatic). To date, the effects of polarization towards an M1 or M2 phenotype have been studied largely in the context of response to pathogen or cancer. Recently, M1 and M2 macrophages have been shown to play distinct roles in tissue remodeling following injury. In the present study, the M1/M2 paradigm was utilized to examine the role of macrophages in the remodeling process following implantation of 14 biologically derived surgical mesh materials in the rat abdominal wall. In situ polarization of macrophages responding to the materials was examined and correlated to a quantitative measure of the observed tissue remodeling response to determine whether macrophage polarization is an accurate predictor of the ability of a biologic scaffold to promote constructive tissue remodeling. Additionally the ability of M1 and M2 macrophages to differentially recruit progenitor-like cells in vitro, which are commonly observed to participate in the remodeling of those ECM scaffolds which have a positive clinical outcome, was examined as a possible mechanism underlying the differences in the observed remodeling responses. The results of the present study show that there is a strong correlation between the early macrophage response to implanted materials and the outcome of tissue remodeling. Increased numbers of M2 macrophages and higher ratios of M2:M1 macrophages within the site of remodeling at 14 days were associated with more positive remodeling outcomes (r(2)=0.525-0.686, p<0.05). Further, the results of the present study suggest that the constructive remodeling outcome may be due to the recruitment and survival of different cell populations to the sites of remodeling associated with materials that elicit an M1 vs. M2 response. Both M2 and M0 macrophage conditioned media were shown to have higher chemotactic activities than media conditioned by M1 macrophages (p<0.05). A more thorough understanding of these issues will logically influence the design of next generation biomaterials and the development of regenerative medicine strategies for the formation of functional host tissues.
Biomaterials | 2012
Timothy J. Keane; Ricardo Londono; Neill J. Turner; Stephen F. Badylak
Biologic scaffold materials composed of extracellular matrix (ECM) are routinely used for a variety of clinical applications. Despite known variations in tissue remodeling outcomes, quantitative criteria by which decellularization can be assessed were only recently described and as a result, the amount of retained cellular material varies widely among commercial products. The objective of this study was to evaluate the consequences of ineffective decellularization on the host response. Three different methods of decellularization were used to decellularize porcine small intestinal ECM (SIS-ECM). The amount of cell remnants was quantified by the amount and fragmentation of DNA within the scaffold materials. The M1/M2 phenotypic polarization profile of macrophages, activated in response to these ECM scaffolds, was assessed in vitro and in vivo using a rodent model of body wall repair. The results show that, in vitro, more aggressive decellularization is associated with a shift in macrophage phenotype predominance from M1 to M2. While this shift was not quantitatively apparent in vivo, notable differences were found in the distribution of M1 vs. M2 macrophages within the various scaffolds. A clear association between macrophage phenotype and remodeling outcome exists and effective decellularization remains an important component in the processing of ECM-based scaffolds.
Annals of Biomedical Engineering | 2015
Ricardo Londono; Stephen F. Badylak
Successful regenerative medicine strategies for functional tissue reconstruction include the in situ placement of acellular materials composed of the extracellular matrix (ECM) or individual components of the ECM. The composition and ultrastructure of these materials vary depending on multiple factors including the tissue source and species from which the materials are harvested, the methods of manufacture, the efficiency of decellularization, post-processing modifications such as chemical cross-linking or solubilization, and the methods of terminal sterilization. Appropriately configured materials have the ability to modulate different stages of the healing response by inducing a shift from a process of inflammation and scar tissue formation to one of constructive remodeling and functional tissue restoration. The events that facilitate such a dramatic change during the biomaterial-host interaction are complex and necessarily involve both the immune system and mechanisms of stem cell recruitment, growth, and differentiation. The present manuscript reviews the composition of biologic scaffolds, the methods and recommendations for manufacture, the mechanisms of the biomaterial–host interaction, and the clinical application of this regenerative medicine approach.
Biomaterials | 2014
Denver M. Faulk; Ricardo Londono; Matthew T. Wolf; Christian A. Ranallo; Christopher A. Carruthers; Justin D. Wildemann; Christopher L. Dearth; Stephen F. Badylak
Polypropylene has been used as a surgical mesh material for several decades. This non-degradable synthetic polymer provides mechanical strength, a predictable host response, and its use has resulted in reduced recurrence rates for ventral hernia and pelvic organ prolapse. However, polypropylene and similar synthetic materials are associated with a chronic local tissue inflammatory response and dense fibrous tissue deposition. These outcomes have prompted variations in mesh design to minimize the surface area interface and increase integration with host tissue. In contrast, biologic scaffold materials composed of extracellular matrix (ECM) are rapidly degraded in-vivo and are associated with constructive tissue remodeling and minimal fibrosis. The objective of the present study was to assess the effects of an ECM hydrogel coating on the long-term host tissue response to polypropylene mesh in a rodent model of abdominal muscle injury. At 14 days post implantation, the ECM coated polypropylene mesh devices showed a decreased inflammatory response as characterized by the number and distribution of M1 macrophages (CD86+/CD68+) around mesh fibers when compared to the uncoated mesh devices. At 180 days the ECM coated polypropylene showed decreased density of collagen and amount of mature type I collagen deposited between mesh fibers when compared to the uncoated mesh devices. This study confirms and extends previous findings that an ECM coating mitigates the chronic inflammatory response and associated scar tissue deposition characteristic of polypropylene.
Journal of Biomedical Materials Research Part A | 2014
Matthew T. Wolf; Christopher A. Carruthers; Christopher L. Dearth; Peter M. Crapo; Alexander Huber; Olivia A. Burnsed; Ricardo Londono; Scott A. Johnson; Kerry A. Daly; Elizabeth C. Stahl; John M. Freund; Christopher J. Medberry; Lisa E. Carey; Alejandro Nieponice; Nicholas J. Amoroso; Stephen F. Badylak
Surgical mesh devices composed of synthetic materials are commonly used for ventral hernia repair. These materials provide robust mechanical strength and are quickly incorporated into host tissue; factors that contribute to reduced hernia recurrence rates. However, such mesh devices cause a foreign body response with the associated complications of fibrosis and patient discomfort. In contrast, surgical mesh devices composed of naturally occurring extracellular matrix (ECM) are associated with constructive tissue remodeling, but lack the mechanical strength of synthetic materials. A method for applying a porcine dermal ECM hydrogel coating to a polypropylene mesh is described herein with the associated effects upon the host tissue response and biaxial mechanical behavior. Uncoated and ECM coated heavy-weight BARD™ Mesh were compared to the light-weight ULTRAPRO™ and BARD™ Soft Mesh devices in a rat partial thickness abdominal defect overlay model. The ECM coated mesh attenuated the pro-inflammatory response compared to all other devices, with a reduced cell accumulation and fewer foreign body giant cells. The ECM coating degraded by 35 days, and was replaced with loose connective tissue compared to the dense collagenous tissue associated with the uncoated polypropylene mesh device. Biaxial mechanical characterization showed that all of the mesh devices were of similar isotropic stiffness. Upon explanation, the light-weight mesh devices were more compliant than the coated or uncoated heavy-weight devices. This study shows that an ECM coating alters the default host response to a polypropylene mesh, but not the mechanical properties in an acute in vivo abdominal repair model.
Biomaterials | 2013
Timothy J. Keane; Ricardo Londono; Ryan M. Carey; Christopher A. Carruthers; Janet E. Reing; Christopher L. Dearth; Antonio D’Amore; Christopher J. Medberry; Stephen F. Badylak
Biologic scaffolds composed of extracellular matrix (ECM) are commonly used to facilitate a constructive remodeling response in several types of tissue, including the esophagus. Surgical manipulation of the esophagus is often complicated by stricture, but preclinical and clinical studies have shown that the use of an ECM scaffold can mitigate stricture and promote a constructive outcome after resection of full circumference esophageal mucosa. Recognizing the potential benefits of ECM derived from homologous tissue (i.e., site-specific ECM), the objective of the present study was to prepare, characterize, and assess the in-vivo remodeling properties of ECM from porcine esophageal mucosa. The developed protocol for esophageal ECM preparation is compliant with previously established criteria of decellularization and results in a scaffold that maintains important biologic components and an ultrastructure consistent with a basement membrane complex. Perivascular stem cells remained viable when seeded upon the esophageal ECM scaffold in-vitro, and the in-vivo host response showed a pattern of constructive remodeling when implanted in soft tissue.
The Annals of Thoracic Surgery | 2014
Alejandro Nieponice; Franco F. Ciotola; Fabio Nachman; Blair A. Jobe; Toshitaka Hoppo; Ricardo Londono; Stephen F. Badylak; Adolfo E. Badaloni
BACKGROUND Standard techniques for surgical reconstruction of the esophagus remain suboptimal. Primary closure of diseased or injured esophagus has been associated with high morbidity, primarily due to leak and stricture, and synthetic materials are contraindicated due to the high risk of erosion and infection. Degradable bioscaffolds composed of extracellular matrix (ECM) have recently shown promising results in both pre-clinical and clinical settings to prevent stricture after extended endoscopic mucosal resection. We propose a novel surgical technique that utilizes an ECM scaffold as a reconstructive patch to augment the esophageal diameter during primary repair. METHODS Four patients requiring esophageal reconstruction underwent a patch esophagoplasty using an ECM scaffold composed of porcine urinary bladder ECM. The full thickness wall of the esophagus was replaced with an ECM patch that was sutured to the edges of the remaining esophagus, similar to the patch angioplasty performed in vascular procedures. RESULTS All patients had a favorable clinical outcome with immediate recovery from the procedure and reinstated oral intake after 7 days. One patient had a micro leak at day 5 that closed spontaneously 2 days after drainage. Follow-up studies including barium swallow and esophagogastroduodenoscopy (EGD) showed adequate esophageal emptying through the surgical segment in all patients. The EGD showed complete mucosal remodeling at 2 months, with approximately 20% area contraction at the patch level. The area of the defect was indistinguishable from surrounding healthy tissue. Biopsy of the patch area showed normal squamous epithelium. One of the patients had a separate intrathoracic stricture that required further surgery. Clinical outcomes were otherwise favorable in all cases. CONCLUSIONS An alternative for the treatment of esophageal stenosis is presented which uses a biological scaffold and an innovative surgical procedure. Additional work, including prospective studies and long-term follow-up, is required to fully evaluate the potential of this bioscaffold-based regenerative medicine approach for esophageal reconstruction.
Biomaterials | 2014
Lisa E. Carey; Christopher L. Dearth; Scott A. Johnson; Ricardo Londono; Christopher J. Medberry; Kerry A. Daly; Stephen F. Badylak
Biologic scaffold materials are used for repair and reconstruction of injured or missing tissues. Such materials are often composed of allogeneic or xenogeneic extracellular matrix (ECM) manufactured by decellularization of source tissue, such as dermis. Dermal ECM (D-ECM) has been observed to degrade and remodel in vivo more slowly than other biologic scaffold materials, such as small intestinal submucosa (SIS-ECM). Histologic examination is a common method for evaluating material degradation, but it lacks sensitivity and is subject to observer bias. Utilization of (14)C-proline labeled ECM is a quantitative alternative for measuring degradation of ECM scaffolds. Using both methods, the amount of degradation of D-ECM and SIS-ECM was determined at 2, 4, and 24 weeks post-implantation in a rodent model. Results utilizing (14)C liquid scintillation counting (LSC) analysis showed distinct differences in degradation at the three time points. D-ECM material in situ stayed the same at 76% remaining from 2 to 4 weeks post-implantation, and then decreased to 44% remaining at 24 weeks. In the same time period, implanted SIS-ECM material decreased from 72% to 13% to 0%. Visual examination of device degradation by histology overestimated degradation at 2 weeks and underestimated device degradation at 24 weeks, compared to the (14)C method.
Acta Biomaterialia | 2016
Christopher L. Dearth; Peter F. Slivka; Scott A. Stewart; Timothy J. Keane; Justin K. Tay; Ricardo Londono; Qingnian Goh; Francis X. Pizza; Stephen F. Badylak
UNLABELLED Extracellular matrix (ECM) has been used as a biologic scaffold material to both reinforce the surgical repair of soft tissue and serve as an inductive template to promote a constructive tissue remodeling response. Success of such an approach is dependent on macrophage-mediated degradation and remodeling of the biologic scaffold. Macrophage phenotype during these processes is a predictive factor of the eventual remodeling outcome. ECM scaffolds have been shown to promote an anti-inflammatory or M2-like macrophage phenotype in vitro that includes secretion of downstream products of cycolooxygenases 1 and 2 (COX1/2). The present study investigated the effect of a common COX1/2 inhibitor (Aspirin) on macrophage phenotype and tissue remodeling in a rodent model of ECM scaffold treated skeletal muscle injury. Inhibition of COX1/2 reduced the constructive remodeling response by hindering myogenesis and collagen deposition in the defect area. The inhibited response was correlated with a reduction in M2-like macrophages in the defect area. The effects of Aspirin on macrophage phenotype were corroborated using an established in vitro macrophage model which showed a reduction in both ECM induced prostaglandin secretion and expression of a marker of M2-like macrophages (CD206). These results raise questions regarding the common peri-surgical administration of COX1/2 inhibitors when biologic scaffold materials are used to facilitate muscle repair/regeneration. STATEMENT OF SIGNIFICANCE COX1/2 inhibitors such as nonsteroidal anti-inflammatory drugs (NSAIDs) are routinely administered post-surgically for analgesic purposes. While COX1/2 inhibitors are important in pain management, they have also been shown to delay or diminish the healing process, which calls to question their clinical use for treating musculotendinous injuries. The present study aimed to investigate the influence of a common NSAID, Aspirin, on the constructive remodeling response mediated by an ECM scaffold (UBM) in a rat skeletal muscle injury model. The COX1/2 inhibitor, Aspirin, was found to mitigate the ECM scaffold-mediated constructive remodeling response both in an in vitro co-culture system and an in vivo rat model of skeletal muscle injury. The results presented herein provide data showing that NSAIDs may significantly alter tissue remodeling outcomes when a biomaterial is used in a regenerative medicine/tissue engineering application. Thus, the decision to prescribe NSAIDs to manage the symptoms of inflammation post-ECM scaffold implantation should be carefully considered.
Journal of Biomedical Materials Research Part B | 2017
Timothy J. Keane; Jenna L. Dziki; Arthur Castelton; Denver M. Faulk; Victoria Messerschmidt; Ricardo Londono; Janet E. Reing; Sachin S. Velankar; Stephen F. Badylak
Gastrointestinal pathologies, injuries, and defects affect millions of individuals each year. While there are diverse treatment options for these individuals, no ideal solution exists. The repair or replacement of gastrointestinal tissue, therefore, represents a large unmet clinical need. Biomaterials derived from extracellular matrix (ECM) scaffolds have been effectively used to repair or replace numerous tissues throughout the body in both preclinical and clinical studies. Such scaffolds are prepared from decellularized tissues, and the biochemical, structural, and biologic properties vary depending upon the source tissue from which the ECM is derived. Given the potential benefit of a site-specific ECM scaffold for some applications, the objective of this study was to prepare, characterize, and determine the in vitro and in vivo cell response to ECM derived from porcine colon. Results of this study show that porcine colon can be effectively decellularized while retaining biochemical and structural constituents of the source tissue. Two forms of colonic ECM, scaffold and hydrogel, were shown to be cell friendly and facilitate the polarization of macrophages toward an M2 phenotype both in vitro and in vivo.