Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Janet E. Reing is active.

Publication


Featured researches published by Janet E. Reing.


Acta Biomaterialia | 2012

Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials

Bryan N. Brown; Ricardo Londono; Stephen Tottey; Li Zhang; Kathryn A. Kukla; Matthew T. Wolf; Kerry A. Daly; Janet E. Reing; Stephen F. Badylak

Macrophages have been classified as having plastic phenotypes which exist along a spectrum between M1 (classically activated; pro-inflammatory) and M2 (alternatively activated; regulatory, homeostatic). To date, the effects of polarization towards an M1 or M2 phenotype have been studied largely in the context of response to pathogen or cancer. Recently, M1 and M2 macrophages have been shown to play distinct roles in tissue remodeling following injury. In the present study, the M1/M2 paradigm was utilized to examine the role of macrophages in the remodeling process following implantation of 14 biologically derived surgical mesh materials in the rat abdominal wall. In situ polarization of macrophages responding to the materials was examined and correlated to a quantitative measure of the observed tissue remodeling response to determine whether macrophage polarization is an accurate predictor of the ability of a biologic scaffold to promote constructive tissue remodeling. Additionally the ability of M1 and M2 macrophages to differentially recruit progenitor-like cells in vitro, which are commonly observed to participate in the remodeling of those ECM scaffolds which have a positive clinical outcome, was examined as a possible mechanism underlying the differences in the observed remodeling responses. The results of the present study show that there is a strong correlation between the early macrophage response to implanted materials and the outcome of tissue remodeling. Increased numbers of M2 macrophages and higher ratios of M2:M1 macrophages within the site of remodeling at 14 days were associated with more positive remodeling outcomes (r(2)=0.525-0.686, p<0.05). Further, the results of the present study suggest that the constructive remodeling outcome may be due to the recruitment and survival of different cell populations to the sites of remodeling associated with materials that elicit an M1 vs. M2 response. Both M2 and M0 macrophage conditioned media were shown to have higher chemotactic activities than media conditioned by M1 macrophages (p<0.05). A more thorough understanding of these issues will logically influence the design of next generation biomaterials and the development of regenerative medicine strategies for the formation of functional host tissues.


Tissue Engineering Part A | 2009

Degradation Products of Extracellular Matrix Affect Cell Migration and Proliferation

Janet E. Reing; Li Zhang; Julie Myers-Irvin; Kevin Cordero; Donald O. Freytes; Ellen Heber-Katz; Khamilia Bedelbaeva; Donna McIntosh; Abiche H. Dewilde; Susan J. Braunhut; Stephen F. Badylak

Biologic scaffolds composed of extracellular matrix (ECM) are utilized in numerous regenerative medicine applications to facilitate the constructive remodeling of tissues and organs. The mechanisms by which the host remodeling response occurs are not fully understood, but recent studies suggest that both constituent growth factors and biologically active degradation products derived from ECM play important roles. The objective of the present study was to determine if degradation of ECM scaffold materials in vitro by methods that are biochemically and physiologically relevant can yield products that possess chemotactic and/or mitogenic activities for fully differentiated mammalian endothelial cells and undifferentiated multipotential progenitor cells. ECM harvested from porcine urinary bladder was degraded enzymatically with pepsin/hydrochloric acid or papain. The ECM degradation products were tested for chemoattractant properties utilizing either 48-well chemotaxis filter migration microchambers or fluorescence-based filter migration assays, and were tested for mitogenic properties in cell proliferation assays. Results showed that ECM degradation products possessed chemotactic and mitogenic activities for multipotential progenitor cells and that the same degradation products inhibited both chemotaxis and proliferation of differentiated endothelial cells. These findings support the concept that degradation products of ECM bioscaffolds are important modulators of the recruitment and proliferation of appropriate cell types during the process of ECM scaffold remodeling.


Tissue Engineering Part C-methods | 2011

A Whole-Organ Regenerative Medicine Approach for Liver Replacement

Alejandro Soto-Gutierrez; Li Zhang; Chris Medberry; Ken Fukumitsu; Denver M. Faulk; Hongbin Jiang; Janet E. Reing; Roberto Gramignoli; Junji Komori; Mark A. Ross; Masaki Nagaya; Eric Lagasse; Donna B. Stolz; Stephen C. Strom; Ira J. Fox; Stephen F. Badylak

BACKGROUND & AIMS The therapy of choice for end-stage liver disease is whole-organ liver transplantation, but this option is limited by a shortage of donor organs. Cell-based therapies and hepatic tissue engineering have been considered as alternatives to liver transplantation, but neither has proven effective to date. A regenerative medicine approach for liver replacement has recently been described that includes the use of a three-dimensional organ scaffold prepared by decellularization of xenogeneic liver. The present study investigates a new, minimally disruptive method for whole-organ liver decellularization and three different cell reseeding strategies to engineer functional liver tissue. METHODS A combination of enzymatic, detergent, and mechanical methods are used to remove all cells from isolated rat livers. Whole-organ perfusion is used in a customized organ chamber and the decellularized livers are examined by morphologic, biochemical, and immunolabeling techniques for preservation of the native matrix architecture and composition. Three different methods for hepatocyte seeding of the resultant three-dimensional liver scaffolds are evaluated to maximize cell survival and function: (1) direct parenchymal injection, (2) multistep infusion, or (3) continuous perfusion. RESULTS The decellularization process preserves the three-dimensional macrostructure, the ultrastructure, the composition of the extracellular matrix components, the native microvascular network of the liver, and the bile drainage system, and up to 50% of growth factor content. The three-dimensional liver matrix reseeded with the multistep infusion of hepatocytes generated ∼90% of cell engraftment and supported liver-specific functional capacities of the engrafted cells, including albumin production, urea metabolism, and cytochrome P450 induction. CONCLUSIONS Whole-organ liver decellularization is possible with maintenance of structure and composition suitable to support functional hepatocytes.


Biomaterials | 2010

The Effects of Processing Methods upon Mechanical and Biologic Properties of Porcine Dermal Extracellular Matrix Scaffolds

Janet E. Reing; Bryan N. Brown; Kerry A. Daly; John M. Freund; Thomas W. Gilbert; Susan X. Hsiong; Alexander Huber; Karen E. Kullas; Stephen Tottey; Matthew T. Wolf; Stephen F. Badylak

Biologic materials from various species and tissues are commonly used as surgical meshes or scaffolds for tissue reconstruction. Extracellular matrix (ECM) represents the secreted product of the cells comprising each tissue and organ, and therefore provides a unique biologic material for selected regenerative medicine applications. Minimal disruption of ECM ultrastructure and content during tissue processing is typically desirable. The objective of this study was to systematically evaluate effects of commonly used tissue processing steps upon porcine dermal ECM scaffold composition, mechanical properties, and cytocompatibility. Processing steps evaluated included liming and hot water sanitation, trypsin/SDS/TritonX-100 decellularization, and trypsin/TritonX-100 decellularization. Liming decreased the growth factor and glycosaminoglycan content, the mechanical strength, and the ability of the ECM to support in vitro cell growth (p ≤ 0.05 for all). Hot water sanitation treatment decreased only the growth factor content of the ECM (p ≤ 0.05). Trypsin/SDS/TritonX-100 decellularization decreased the growth factor content and the ability of the ECM to support in vitro cell growth (p ≤ 0.05 for both). Trypsin/Triton X-100 decellularization also decreased the growth factor content of the ECM but increased the ability of the ECM to support in vitro cell growth (p ≤ 0.05 for both). We conclude that processing steps evaluated in the present study affect content, mechanical strength, and/or cytocompatibility of the resultant porcine dermal ECM, and therefore care must be taken in choosing appropriate processing steps to maintain the beneficial effects of ECM in biologic scaffolds.


Biomaterials | 2012

Biologic scaffold composed of skeletal muscle extracellular matrix.

Matthew T. Wolf; Kerry A. Daly; Janet E. Reing; Stephen F. Badylak

Biologic scaffolds prepared from the extracellular matrix (ECM) of decellularized mammalian tissues have been shown to facilitate constructive remodeling in injured tissues such as skeletal muscle, the esophagus, and lower urinary tract, among others. The ECM of every tissue has a unique composition and structure that likely has direct effects on the host response and it is plausible that ECM harvested from a given tissue would provide distinct advantages over ECM harvested from nonhomologous tissues. For example, a tissue specific muscle ECM scaffold may be more suitable for constructive remodeling of skeletal muscle than non-homologous ECM tissue sources. The present study describes an enzymatic and chemical decellularization process for isolating skeletal muscle ECM scaffolds using established decellularization criteria and characterized the structure and chemical composition of the resulting ECM. The results were compared to those from a non-muscle ECM derived from small intestine (SIS). Muscle ECM was shown to contain growth factors, glycosaminoglycans, and basement membrane structural proteins which differed from those present in SIS. Myogenic cells survived and proliferated on muscle ECM scaffolds in vitro, and when implanted in a rat abdominal wall injury model in vivo was shown to induce a constructive remodeling response associated with scaffold degradation and myogenesis in the implant area; however, the remodeling outcome did not differ from that induced by SIS by 35 days post surgery. These results suggest that superior tissue remodeling outcomes are not universally dependent upon homologous tissue derived ECM scaffold materials.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Epimorphic regeneration approach to tissue replacement in adult mammals

Vineet Agrawal; Scott A. Johnson; Janet E. Reing; Li Zhang; Stephen Tottey; Gang Wang; Karen K. Hirschi; Susan J. Braunhut; Lorraine J. Gudas; Stephen F. Badylak

Urodeles and fetal mammals are capable of impressive epimorphic regeneration in a variety of tissues, whereas the typical default response to injury in adult mammals consists of inflammation and scar tissue formation. One component of epimorphic regeneration is the recruitment of resident progenitor and stem cells to a site of injury. Bioactive molecules resulting from degradation of extracellular matrix (ECM) have been shown to recruit a variety of progenitor and stem cells in vitro in adult mammals. The ability to recruit multipotential cells to the site of injury by in vivo administration of chemotactic ECM degradation products in a mammalian model of digit amputation was investigated in the present study. Adult, 6- to 8-week-old C57/BL6 mice were subjected to midsecond phalanx amputation of the third digit of the right hind foot and either treated with chemotactic ECM degradation products or left untreated. At 14 days after amputation, mice treated with ECM degradation products showed an accumulation of heterogeneous cells that expressed markers of multipotency, including Sox2, Sca1, and Rex1 (Zfp42). Cells isolated from the site of amputation were capable of differentiation along neuroectodermal and mesodermal lineages, whereas cells isolated from control mice were capable of differentiation along only mesodermal lineages. The present findings demonstrate the recruitment of endogenous stem cells to a site of injury, and/or their generation/proliferation therein, in response to ECM degradation products.


Biomaterials | 2012

Biologic scaffolds composed of central nervous system extracellular matrix

Peter M. Crapo; Christopher J. Medberry; Janet E. Reing; Stephen Tottey; Yolandi van der Merwe; Kristen E. Jones; Stephen F. Badylak

Acellular biologic scaffolds are commonly used to facilitate the constructive remodeling of three of the four traditional tissue types: connective, epithelial, and muscle tissues. However, the application of extracellular matrix (ECM) scaffolds to neural tissue has been limited, particularly in the central nervous system (CNS) where intrinsic regenerative potential is low. The ability of decellularized liver, lung, muscle, and other tissues to support tissue-specific cell phenotype and function suggests that CNS-derived biologic scaffolds may help to overcome barriers to mammalian CNS repair. A method was developed to create CNS ECM scaffolds from porcine optic nerve, spinal cord, and brain, with decellularization verified against established criteria. CNS ECM scaffolds retained neurosupportive proteins and growth factors and, when tested with the PC12 cell line in vitro, were cytocompatible and stimulated proliferation, migration, and differentiation. Urinary bladder ECM (a non-CNS ECM scaffold) was also cytocompatible and stimulated PC12 proliferation but inhibited migration rather than acting as a chemoattractant over the same concentration range while inducing greater rates of PC12 differentiation compared to CNS ECM. These results suggest that CNS ECM may provide tissue-specific advantages in CNS regenerative medicine applications and that ECM scaffolds in general may aid functional recovery after CNS injury.


Matrix Biology | 2010

Extracellular matrix-derived products modulate endothelial and progenitor cell migration and proliferation in vitro and stimulate regenerative healing in vivo.

Ekaterina Vorotnikova; Donna McIntosh; Abiche H. Dewilde; Jianping Zhang; Janet E. Reing; Li Zhang; Kevin Cordero; Khamilia Bedelbaeva; Dimitri L. Gourevitch; Ellen Heber-Katz; Stephen F. Badylak; Susan J. Braunhut

Most adult mammals heal without restorative replacement of lost tissue and instead form scar tissue at an injury site. One exception is the adult MRL/MpJ mouse that can regenerate ear and cardiac tissue after wounding with little evidence of scar tissue formation. Following production of a MRL mouse ear hole, 2mm in diameter, a structure rapidly forms at the injury site that resembles the amphibian blastema at a limb amputation site during limb regeneration. We have isolated MRL blastemal cells (MRL-B) from this structure and adapted them to culture. We demonstrate by RT-PCR that even after continuous culturing of these cells they maintain expression of several progenitor cell markers, including DLK (Pref-1), and Msx-1. We have isolated the underlying extracellular matrix (ECM) produced by these MRL-B cells using a new non-proteolytic method and studied the biological activities of this cell-free ECM. Multiplex microELISA analysis of MRL-B cell-free ECM vs. cells revealed selective enrichment of growth factors such as bFGF, HGF and KGF in the matrix compartment. The cell-free ECM, degraded by mild enzyme treatment, was active in promoting migration and proliferation of progenitor cells in vitro and accelerating wound closure in a mouse full thickness cutaneous wound assay in vivo. In vivo, a single application of MRL-B cell matrix-derived products to full thickness cutaneous wounds in non-regenerative mice, B6, induced re-growth of pigmented hair, dermis and epidermis at the wound site whereas scar tissue replaced these tissues at wound sites in mice treated with vehicle alone. These studies suggest that matrix-derived products can stimulate regenerative healing and avert scar tissue formation in adult mammals.


Laboratory Investigation | 2002

Neurologic Defects and Selective Disruption of Basement Membranes in Mice Lacking Entactin-1/Nidogen-1

Lijin Dong; Yong Chen; Marcia Lewis; Jyh Cheng Hsieh; Janet E. Reing; J. Richard Chaillet; Carina Y. Howell; Mona F. Melhem; Sadayuki Inoue; Jerry R. Kuszak; Koen DeGeest; Albert E. Chung

Entactin-1 (nidogen-1) is an ubiquitous component of basement membranes. From in vitro experiments, entactin-1 was assigned a role in maintaining the structural integrity of the basement membrane because of its binding affinity to other components, such as type IV collagen and laminin. Entactin-1 also interacts with integrin receptors on the cell surface to mediate cell adhesion, spreading, and motility. Targeted disruption of the entactin-1 gene in the mouse presented in this study revealed a duplication of the entacin-1 locus. Homozygous mutants for the functional locus lacked entactin-1 mRNA and protein and often displayed seizure-like symptoms and loss of muscle control in the hind legs. The behavior patterns suggested the presence of neurologic deficits in the central nervous system, thus providing genetic evidence linking entactin-1 to proper functions of the neuromuscular system. In homozygous mutants, structural alterations in the basement membranes were found only in selected locations including brain capillaries and the lens capsule. The morphology of the basement membranes in other tissues examined superficially appeared to be normal. These observations suggest that the lost functions of entactin-1 result in pathologic changes that are highly tissue specific.


Acta Biomaterialia | 2014

The effect of detergents on the basement membrane complex of a biologic scaffold material.

Denver M. Faulk; Christopher A. Carruthers; Harleigh J. Warner; Caroline R. Kramer; Janet E. Reing; Li Zhang; Antonio D’Amore; Stephen F. Badylak

The basement membrane complex (BMC) is a critical component of the extracellular matrix (ECM) that supports and facilitates the growth of cells. This study investigates four detergents commonly used in the process of tissue decellularization and their effect upon the BMC. The BMC of porcine urinary bladder was subjected to 3% Triton-X 100, 8mM 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), 4% sodium deoxycholate or 1% sodium dodecyl sulfate (SDS) for 24h. The BMC structure for each treatment group was assessed by immunolabeling, scanning electron microscopy (SEM) and second harmonic generation (SHG) imaging of the fiber network. The composition was assessed by quantification of dsDNA, glycosaminoglycans (GAG) and collagen content. The results showed that collagen fibers within samples treated with 1% SDS and 8mM CHAPS were denatured, and the ECM contained fewer GAG compared with samples treated with 3% Triton X-100 or 4% sodium deoxycholate. Human microvascular endothelial cells (HMEC) were seeded onto each BMC and cultured for 7 days. Cell-ECM interactions were investigated by immunolabeling for integrin β-1, SEM imaging and semi-quantitative assessment of cellular infiltration, phenotype and confluence. HMEC cultured on a BMC treated with 3% Triton X-100 were more confluent and had a normal phenotype compared with HMEC cultured on a BMC treated with 4% sodium deoxycholate, 8mM CHAPS and 1% SDS. Both 8mM CHAPS and 1% SDS damaged the BMC to the extent that seeded HMEC were able to infiltrate the damaged sub-basement membrane tissue, showed decreased confluence and an atypical phenotype. The choice of detergents used for tissue decellularization can have a marked effect upon the integrity of the BMC of the resultant bioscaffold.

Collaboration


Dive into the Janet E. Reing's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Zhang

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen Tottey

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Bryan N. Brown

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Kerry A. Daly

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge