Ricardo Orozco-Solis
University of California, Irvine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ricardo Orozco-Solis.
Cell | 2013
Kristin Eckel-Mahan; Vishal R. Patel; Sara de Mateo; Ricardo Orozco-Solis; Nicholas Ceglia; Saurabh Sahar; Sherry A. Dilag-Penilla; Kenneth A. Dyar; Pierre Baldi; Paolo Sassone-Corsi
Circadian rhythms and cellular metabolism are intimately linked. Here, we reveal that a high-fat diet (HFD) generates a profound reorganization of specific metabolic pathways, leading to widespread remodeling of the liver clock. Strikingly, in addition to disrupting the normal circadian cycle, HFD causes an unexpectedly large-scale genesis of de novo oscillating transcripts, resulting in reorganization of the coordinated oscillations between coherent transcripts and metabolites. The mechanisms underlying this reprogramming involve both the impairment of CLOCK:BMAL1 chromatin recruitment and a pronounced cyclic activation of surrogate pathways through the transcriptional regulator PPARγ. Finally, we demonstrate that it is specifically the nutritional challenge, and not the development of obesity, that causes the reprogramming of the clock and that the effects of the diet on the clock are reversible.
Cold Spring Harbor Symposia on Quantitative Biology | 2011
Marina M. Bellet; Ricardo Orozco-Solis; Saurabh Sahar; Kristin Eckel-Mahan; Paolo Sassone-Corsi
The mammalian cell contains a molecular clock that contributes, within each organism, to circadian rhythms and variety of physiological and metabolic processes. The clock machinery is constituted by interwined transcriptional-translational feedback loops that, through the action of specific transcription factors, modulate the expression of clock-controlled genes. These oscillations in gene expression necessarily implicate events of chromatin remodeling on a relatively large, global scale, considering that as many 10% of cellular transcripts oscillate in a circadian manner. CLOCK, a transcription factor crucial for circadian function, has intrinsic histone acetyltransferase activity and operates within a large nuclear complex with other chromatin remodelers. CLOCK directs the cyclic acetylation of the histone H3 and of its own partner BMAL1. A search for the histone deacetylase (HDAC) that counterbalanced CLOCK activity revealed that SIRT1, a nicotinamide adenine dinucleotide (NAD(+))-dependent HDAC, functions in a circadian manner. Importantly, SIRT1 is a regulator of several metabolic processes and was found to interact with CLOCK and to be recruited to circadian promoters in a cyclic manner. As many transcripts that oscillate in mammalian peripheral tissues encode proteins that have central roles in metabolic processes, these findings establish a functional and molecular link among energy balance, chromatin remodeling, and circadian physiology.
Nature Structural & Molecular Biology | 2015
Lorena Aguilar-Arnal; Sayako Katada; Ricardo Orozco-Solis; Paolo Sassone-Corsi
The circadian clock controls the transcription of hundreds of genes through specific chromatin-remodeling events. The histone methyltransferase mixed-lineage leukemia 1 (MLL1) coordinates recruitment of CLOCK–BMAL1 activator complexes to chromatin, an event associated with cyclic trimethylation of histone H3 Lys4 (H3K4) at circadian promoters. Remarkably, in mouse liver circadian H3K4 trimethylation is modulated by SIRT1, an NAD+-dependent deacetylase involved in clock control. We show that mammalian MLL1 is acetylated at two conserved residues, K1130 and K1133. Notably, MLL1 acetylation is cyclic, controlled by the clock and by SIRT1, and it affects the methyltransferase activity of MLL1. Moreover, H3K4 methylation at clock-controlled-gene promoters is influenced by pharmacological or genetic inactivation of SIRT1. Finally, levels of MLL1 acetylation and H3K4 trimethylation at circadian gene promoters depend on NAD+ circadian levels. These findings reveal a previously unappreciated regulatory pathway between energy metabolism and histone methylation.
Neuroscience | 2014
Ricardo Orozco-Solis; Paolo Sassone-Corsi
Experimental and epidemiological evidence reveal the profound influence that industrialized modern society has imposed on human social habits and physiology during the past 50 years. This drastic change in life-style is thought to be one of the main causes of modern diseases including obesity, type 2 diabetes, mental illness such as depression, sleep disorders, and certain types of cancer. These disorders have been associated to disruption of the circadian clock, an intrinsic time-keeper molecular system present in virtually all cells and tissues. The circadian clock is a key element in homeostatic regulation by controlling a large array of genes implicated in cellular metabolism. Importantly, intimate links between epigenetic regulation and the circadian clock exist and are likely to prominently contribute to the plasticity of the response to the environment. In this review, we summarize some experimental and epidemiological evidence showing how environmental factors such as stress, drugs of abuse and changes in circadian habits, interact through different brain areas to modulate the endogenous clock. Furthermore we point out the pivotal role of the deacetylase silent mating-type information regulation 2 homolog 1 (SIRT1) as a molecular effector of the environment in shaping the circadian epigenetic landscape.
Current Opinion in Genetics & Development | 2014
Ricardo Orozco-Solis; Paolo Sassone-Corsi
Circadian rhythms are generated by an intrinsic cellular mechanism that controls a large array of physiological and metabolic processes. There is erosion in the robustness of circadian rhythms during aging, and disruption of the clock by genetic ablation of specific genes is associated with aging-related features. Importantly, environmental conditions are thought to modulate the aging process. For example, caloric restriction is a very strong environmental effector capable of delaying aging. Intracellular pathways implicating nutrient sensors, such as SIRTs and mTOR complexes, impinge on cellular and epigenetic mechanisms that control the aging process. Strikingly, accumulating evidences indicate that these pathways are involved in both the modulation of the aging process and the control of the clock. Hence, innovative therapeutic strategies focused at controlling the circadian clock and the nutrient sensing pathways might beneficially influence the negative effects of aging.
Cell Metabolism | 2016
Ricardo Orozco-Solis; Lorena Aguilar-Arnal; Mari Murakami; Rita Peruquetti; Giorgio Ramadori; Roberto Coppari; Paolo Sassone-Corsi
Organismal homeostasis relies on coherent interactions among tissues, specifically between brain-driven functions and peripheral metabolic organs. Hypothalamic circuits compute metabolic information to optimize energetic resources, but the role of the circadian clock in these pathways remains unclear. We have generated mice with targeted ablation of the core-clock gene Bmal1 within Sf1-neurons of the ventromedial hypothalamus (VMH). While this mutation does not affect the central clock in the suprachiasmatic nucleus (SCN), the VMH clock controls cyclic thermogenesis in brown adipose tissue (BAT), a tissue that governs energy balance by dissipating chemical energy as heat. VMH-driven control is exerted through increased adrenergic signaling within the sympathetic nervous system, without affecting the BATs endogenous clock. Moreover, we show that the VMH circadian clock computes light and feeding inputs to modulate basal energy expenditure. Thus, we reveal a previously unsuspected circuit where an SCN-independent, hypothalamic circadian clock controls BAT function, energy expenditure, and thermogenesis.
Endocrinology | 2015
Ricardo Orozco-Solis; Giorgio Ramadori; Roberto Coppari; Paolo Sassone-Corsi
Circadian rhythms govern homeostasis and organism physiology. Nutritional cues act as time givers, contributing to the synchronization between central and peripheral clocks. Neuronal food-synchronized clocks are thought to reside in hypothalamic nuclei such as the ventromedial hypothalamus (VMH) and the dorsomedial hypothalamus or extrahypothalamic brain areas such as nucleus accumbens. Interestingly, the metabolic sensor of nicotinamide adenine dinucleotide-dependent deacetylase sirtuin-1 (SIRT1) is highly expressed in the VMH and was shown to contribute to both control of energy balance and clock function. We used mice with targeted ablation of Sirt1 in the steroidogenic factor 1 neurons of the VMH to gain insight on the role played by this deacetylase in the modulation of the central clock by nutritional inputs. By studying circadian behavior and circadian gene expression, we reveal that SIRT1 operates as a metabolic sensor connecting food intake to circadian behavior. Indeed, under food restriction and absence of light, SIRT1 in the VMH contributes to activity behavior and circadian gene expression in the suprachiasmatic nucleus. Thus, under specific physiological conditions, SIRT1 contributes to the modulation of the circadian clock by nutrients.
Diabetes, Obesity and Metabolism | 2015
Selma Masri; Ricardo Orozco-Solis; Lorena Aguilar-Arnal; Marlene Cervantes; Paolo Sassone-Corsi
The circadian clock controls a large variety of neuronal, endocrine, behavioural and physiological responses in mammals. This control is exerted in large part at the transcriptional level on genes expressed in a cyclic manner. A highly specialized transcriptional machinery based on clock regulatory factors organized in feedback autoregulatory loops governs a significant portion of the genome. These oscillations in gene expression are paralleled by critical events of chromatin remodelling that appear to provide plasticity to circadian regulation. Specifically, the nicotinamide adenine dinucleotide (NAD)+‐dependent deacetylases SIRT1 and SIRT6 have been linked to circadian control of gene expression. This, and additional accumulating evidence, shows that the circadian epigenome appears to share intimate links with cellular metabolic processes and has remarkable plasticity showing reprogramming in response to nutritional challenges. In addition to SIRT1 and SIRT6, a number of chromatin remodellers have been implicated in clock control, including the histone H3K4 tri‐methyltransferase MLL1. Deciphering the molecular mechanisms that link metabolism, epigenetic control and circadian responses will provide valuable insights towards innovative strategies of therapeutic intervention.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Lorena Aguilar-Arnal; Suman Ranjit; Chiara Stringari; Ricardo Orozco-Solis; Enrico Gratton; Paolo Sassone-Corsi
Significance Environmental and nutritional cues are crucial to determine genomic responses. They generally proceed through modulation of epigenetic mechanisms. Nuclear sirtuin 1 (SIRT1) is a well-known epigenetic modifier, because it deacetylates histones, and nutrient sensor, because its enzymatic activity is coupled to hydrolysis of NAD+. Compartmentalization of NAD+ metabolism makes it difficult to predict the pace of NAD+-dependent reactions in cells. Here, we use nonlinear optics in live cells to define subnuclear distribution of free and bound NADH, which determines local enzymatic activity. We define subnuclear dynamics of SIRT1 and establish a biophysical signature for SIRT1 activity in live cells. These findings have far-reaching implications, because they describe unique aspects of SIRT1 activity and delineate subnuclear territories of metabolic cues. Sirtuin 1 (SIRT1) is an NAD+-dependent deacetylase that functions as metabolic sensor of cellular energy and modulates biochemical pathways in the adaptation to changes in the environment. SIRT1 substrates include histones and proteins related to enhancement of mitochondrial function as well as antioxidant protection. Fluctuations in intracellular NAD+ levels regulate SIRT1 activity, but how SIRT1 enzymatic activity impacts on NAD+ levels and its intracellular distribution remains unclear. Here, we show that SIRT1 determines the nuclear organization of protein-bound NADH. Using multiphoton microscopy in live cells, we show that free and bound NADH are compartmentalized inside of the nucleus, and its subnuclear distribution depends on SIRT1. Importantly, SIRT6, a chromatin-bound deacetylase of the same class, does not influence NADH nuclear localization. In addition, using fluorescence fluctuation spectroscopy in single living cells, we reveal that NAD+ metabolism in the nucleus is linked to subnuclear dynamics of active SIRT1. These results reveal a connection between NAD+ metabolism, NADH distribution, and SIRT1 activity in the nucleus of live cells and pave the way to decipher links between nuclear organization and metabolism.
Biological Psychiatry | 2017
Ricardo Orozco-Solis; Emilie Montellier; Lorena Aguilar-Arnal; Shogo Sato; Marquis P. Vawter; Blynn G. Bunney; William E. Bunney; Paolo Sassone-Corsi
BACKGROUND Conventional antidepressants usually require several weeks to achieve a full clinical response in patients with major depressive disorder, an illness associated with dysregulated circadian rhythms and a high incidence of suicidality. Two rapid-acting antidepressant strategies, low-dose ketamine (KT) and sleep deprivation (SD) therapies, dramatically reduce depressive symptoms within 24 hours in a subset of major depressive disorder patients. However, it is unknown whether they exert their actions through shared regulatory mechanisms. To address this question, we performed comparative transcriptomics analyses to identify candidate genes and relevant pathways common to KT and SD. METHODS We used the forced swim test, a standardized behavioral approach to measure antidepressant-like activity of KT and SD. We investigated gene expression changes using high-density microarrays and pathway analyses (Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Gene Set Enrichment Analysis) in KT- and SD-treated mice compared with saline-treated control male mice. RESULTS We show that KT and SD elicit common transcriptional responses implicating distinct elements of the circadian clock and processes involved in neuronal plasticity. There is an overlap of 64 genes whose expression is common in KT and SD. Specifically, there is downregulation of clock genes including Ciart, Per2, Npas4, Dbp, and Rorb in both KT- and SD-treated mice. CONCLUSIONS We demonstrate a potential involvement of the circadian clock in rapid antidepressant responses. These findings could open new research avenues to help design chronopharmacological strategies to treat major depressive disorder.