Lorena Aguilar-Arnal
University of California, Irvine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lorena Aguilar-Arnal.
Current Opinion in Cell Biology | 2013
Lorena Aguilar-Arnal; Paolo Sassone-Corsi
Circadian rhythms occur in most of the living organisms, and with a 24 hour periodicity govern a number of physiological and metabolic functions. During the past few years, an important research effort has uncovered new trails that intersect between circadian rhythms and metabolic pathways. At a molecular level, the clock machinery is responsible for the establishment of a circadian epigenome, and this can be modulated by metabolic cues. Indeed, metabolic control by the circadian clock is manifest in the development of metabolic diseases when circadian rhythms are impaired. Thus, pharmacological modulation of circadian rhythms promises new avenues for the treatment of metabolic and sleep disorders.
Nature Structural & Molecular Biology | 2013
Lorena Aguilar-Arnal; Ofir Hakim; Vishal R. Patel; Pierre Baldi; Gordon L. Hager; Paolo Sassone-Corsi
Dynamic transitions in the epigenome have been associated with regulated patterns of nuclear organization. The accumulating evidence that chromatin remodeling is implicated in circadian function prompted us to explore whether the clock may control nuclear architecture. We applied the chromosome conformation capture on chip technology in mouse embryonic fibroblasts (MEFs) to demonstrate the presence of circadian long-range interactions using the clock-controlled Dbp gene as bait. The circadian genomic interactions with Dbp were highly specific and were absent in MEFs whose clock was disrupted by ablation of the Bmal1 gene (also called Arntl). We establish that the Dbp circadian interactome contains a wide variety of genes and clock-related DNA elements. These findings reveal a previously unappreciated circadian and clock-dependent shaping of the nuclear landscape.
Nature Structural & Molecular Biology | 2015
Lorena Aguilar-Arnal; Sayako Katada; Ricardo Orozco-Solis; Paolo Sassone-Corsi
The circadian clock controls the transcription of hundreds of genes through specific chromatin-remodeling events. The histone methyltransferase mixed-lineage leukemia 1 (MLL1) coordinates recruitment of CLOCK–BMAL1 activator complexes to chromatin, an event associated with cyclic trimethylation of histone H3 Lys4 (H3K4) at circadian promoters. Remarkably, in mouse liver circadian H3K4 trimethylation is modulated by SIRT1, an NAD+-dependent deacetylase involved in clock control. We show that mammalian MLL1 is acetylated at two conserved residues, K1130 and K1133. Notably, MLL1 acetylation is cyclic, controlled by the clock and by SIRT1, and it affects the methyltransferase activity of MLL1. Moreover, H3K4 methylation at clock-controlled-gene promoters is influenced by pharmacological or genetic inactivation of SIRT1. Finally, levels of MLL1 acetylation and H3K4 trimethylation at circadian gene promoters depend on NAD+ circadian levels. These findings reveal a previously unappreciated regulatory pathway between energy metabolism and histone methylation.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Lorena Aguilar-Arnal; Paolo Sassone-Corsi
Circadian rhythms drive the temporal organization of a wide variety of physiological and behavioral functions in ∼24-h cycles. This control is achieved through a complex program of gene expression. In mammals, the molecular clock machinery consists of interconnected transcriptional–translational feedback loops that ultimately ensure the proper oscillation of thousands of genes in a tissue-specific manner. To achieve circadian transcriptional control, chromatin remodelers serve the clock machinery by providing appropriate oscillations to the epigenome. Recent findings have revealed the presence of circadian interactomes, nuclear “hubs” of genome topology where coordinately expressed circadian genes physically interact in a spatial and temporal-specific manner. Thus, a circadian nuclear landscape seems to exist, whose interplay with metabolic pathways and clock regulators translates into specific transcriptional programs. Deciphering the molecular mechanisms that connect the circadian clock machinery with the nuclear landscape will reveal yet unexplored pathways that link cellular metabolism to epigenetic control.
Cell Metabolism | 2016
Ricardo Orozco-Solis; Lorena Aguilar-Arnal; Mari Murakami; Rita Peruquetti; Giorgio Ramadori; Roberto Coppari; Paolo Sassone-Corsi
Organismal homeostasis relies on coherent interactions among tissues, specifically between brain-driven functions and peripheral metabolic organs. Hypothalamic circuits compute metabolic information to optimize energetic resources, but the role of the circadian clock in these pathways remains unclear. We have generated mice with targeted ablation of the core-clock gene Bmal1 within Sf1-neurons of the ventromedial hypothalamus (VMH). While this mutation does not affect the central clock in the suprachiasmatic nucleus (SCN), the VMH clock controls cyclic thermogenesis in brown adipose tissue (BAT), a tissue that governs energy balance by dissipating chemical energy as heat. VMH-driven control is exerted through increased adrenergic signaling within the sympathetic nervous system, without affecting the BATs endogenous clock. Moreover, we show that the VMH circadian clock computes light and feeding inputs to modulate basal energy expenditure. Thus, we reveal a previously unsuspected circuit where an SCN-independent, hypothalamic circadian clock controls BAT function, energy expenditure, and thermogenesis.
Diabetes, Obesity and Metabolism | 2015
Selma Masri; Ricardo Orozco-Solis; Lorena Aguilar-Arnal; Marlene Cervantes; Paolo Sassone-Corsi
The circadian clock controls a large variety of neuronal, endocrine, behavioural and physiological responses in mammals. This control is exerted in large part at the transcriptional level on genes expressed in a cyclic manner. A highly specialized transcriptional machinery based on clock regulatory factors organized in feedback autoregulatory loops governs a significant portion of the genome. These oscillations in gene expression are paralleled by critical events of chromatin remodelling that appear to provide plasticity to circadian regulation. Specifically, the nicotinamide adenine dinucleotide (NAD)+‐dependent deacetylases SIRT1 and SIRT6 have been linked to circadian control of gene expression. This, and additional accumulating evidence, shows that the circadian epigenome appears to share intimate links with cellular metabolic processes and has remarkable plasticity showing reprogramming in response to nutritional challenges. In addition to SIRT1 and SIRT6, a number of chromatin remodellers have been implicated in clock control, including the histone H3K4 tri‐methyltransferase MLL1. Deciphering the molecular mechanisms that link metabolism, epigenetic control and circadian responses will provide valuable insights towards innovative strategies of therapeutic intervention.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Lorena Aguilar-Arnal; Suman Ranjit; Chiara Stringari; Ricardo Orozco-Solis; Enrico Gratton; Paolo Sassone-Corsi
Significance Environmental and nutritional cues are crucial to determine genomic responses. They generally proceed through modulation of epigenetic mechanisms. Nuclear sirtuin 1 (SIRT1) is a well-known epigenetic modifier, because it deacetylates histones, and nutrient sensor, because its enzymatic activity is coupled to hydrolysis of NAD+. Compartmentalization of NAD+ metabolism makes it difficult to predict the pace of NAD+-dependent reactions in cells. Here, we use nonlinear optics in live cells to define subnuclear distribution of free and bound NADH, which determines local enzymatic activity. We define subnuclear dynamics of SIRT1 and establish a biophysical signature for SIRT1 activity in live cells. These findings have far-reaching implications, because they describe unique aspects of SIRT1 activity and delineate subnuclear territories of metabolic cues. Sirtuin 1 (SIRT1) is an NAD+-dependent deacetylase that functions as metabolic sensor of cellular energy and modulates biochemical pathways in the adaptation to changes in the environment. SIRT1 substrates include histones and proteins related to enhancement of mitochondrial function as well as antioxidant protection. Fluctuations in intracellular NAD+ levels regulate SIRT1 activity, but how SIRT1 enzymatic activity impacts on NAD+ levels and its intracellular distribution remains unclear. Here, we show that SIRT1 determines the nuclear organization of protein-bound NADH. Using multiphoton microscopy in live cells, we show that free and bound NADH are compartmentalized inside of the nucleus, and its subnuclear distribution depends on SIRT1. Importantly, SIRT6, a chromatin-bound deacetylase of the same class, does not influence NADH nuclear localization. In addition, using fluorescence fluctuation spectroscopy in single living cells, we reveal that NAD+ metabolism in the nucleus is linked to subnuclear dynamics of active SIRT1. These results reveal a connection between NAD+ metabolism, NADH distribution, and SIRT1 activity in the nucleus of live cells and pave the way to decipher links between nuclear organization and metabolism.
Biological Psychiatry | 2017
Ricardo Orozco-Solis; Emilie Montellier; Lorena Aguilar-Arnal; Shogo Sato; Marquis P. Vawter; Blynn G. Bunney; William E. Bunney; Paolo Sassone-Corsi
BACKGROUND Conventional antidepressants usually require several weeks to achieve a full clinical response in patients with major depressive disorder, an illness associated with dysregulated circadian rhythms and a high incidence of suicidality. Two rapid-acting antidepressant strategies, low-dose ketamine (KT) and sleep deprivation (SD) therapies, dramatically reduce depressive symptoms within 24 hours in a subset of major depressive disorder patients. However, it is unknown whether they exert their actions through shared regulatory mechanisms. To address this question, we performed comparative transcriptomics analyses to identify candidate genes and relevant pathways common to KT and SD. METHODS We used the forced swim test, a standardized behavioral approach to measure antidepressant-like activity of KT and SD. We investigated gene expression changes using high-density microarrays and pathway analyses (Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Gene Set Enrichment Analysis) in KT- and SD-treated mice compared with saline-treated control male mice. RESULTS We show that KT and SD elicit common transcriptional responses implicating distinct elements of the circadian clock and processes involved in neuronal plasticity. There is an overlap of 64 genes whose expression is common in KT and SD. Specifically, there is downregulation of clock genes including Ciart, Per2, Npas4, Dbp, and Rorb in both KT- and SD-treated mice. CONCLUSIONS We demonstrate a potential involvement of the circadian clock in rapid antidepressant responses. These findings could open new research avenues to help design chronopharmacological strategies to treat major depressive disorder.
Nature | 2011
Lorena Aguilar-Arnal; Paolo Sassone-Corsi
Biophysical Journal | 2017
Suman Ranjit; Lorena Aguilar-Arnal; Chiara Stringari; Paolo Sassone-Corsi; Enrico Gratton