Ricardo Z. N. Vêncio
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ricardo Z. N. Vêncio.
Clinical Cancer Research | 2005
Maria Aparecida Azevedo Koike Folgueira; Dirce Maria Carraro; Helena Brentani; Diogo F.C. Patrão; Edson Mantovani Barbosa; Mário Mourão Netto; José Roberto Fígaro Caldeira; Maria Lucia Hirata Katayama; Fernando Augusto Soares; Célia Tosello Oliveira; Luiz F. L. Reis; Jane Kaiano; Luiz Paulo Camargo; Ricardo Z. N. Vêncio; Igor Snitcovsky; Fabiana Baroni Alves Makdissi; Paulo J. S. Silva; João Carlos Sampaio Góes; Maria Mitzi Brentani
Purpose: This study was designed to identify genes that could predict response to doxorubicin-based primary chemotherapy in breast cancer patients. Experimental Design: Biopsy samples were obtained before primary treatment with doxorubicin and cyclophosphamide. RNA was extracted and amplified and gene expression was analyzed using cDNA microarrays. Results: Response to chemotherapy was evaluated in 51 patients, and based on Response Evaluation Criteria in Solid Tumors guidelines, 42 patients, who presented at least a partial response (≥30% reduction in tumor dimension), were classified as responsive. Gene profile of samples, divided into training set (n = 38) and independent validation set (n = 13), were at first analyzed against a cDNA microarray platform containing 692 genes. Unsupervised clustering could not separate responders from nonresponders. A classifier was identified comprising EMILIN1, FAM14B, and PBEF, which however could not correctly classify samples included in the validation set. Our next step was to analyze gene profile in a more comprehensive cDNA microarray platform, containing 4,608 open reading frame expressed sequence tags. Seven samples of the initial training set (all responder patients) could not be analyzed. Unsupervised clustering could correctly group all the resistant samples as well as at least 85% of the sensitive samples. Additionally, a classifier, including PRSS11, MTSS1, and CLPTM1, could correctly distinguish 95.4% of the 44 samples analyzed, with only two misclassifications, one sensitive sample and one resistant tumor. The robustness of this classifier is 2.5 greater than the first one. Conclusion: A trio of genes might potentially distinguish doxorubicin-responsive from nonresponsive tumors, but further validation by a larger number of samples is still needed.
BMC Genomics | 2009
Flávia Stal Papini-Terzi; Flávia Riso Rocha; Ricardo Z. N. Vêncio; Juliana de Maria Felix; Diana Santos Branco; Alessandro Jaquiel Waclawovsky; Luiz Eduardo Vieira Del Bem; Carolina G. Lembke; Maximiller D. L. Costa; Milton Yutaka Nishiyama; Renato Vicentini; Michel Vincentz; Eugênio César Ulian; Marcelo Menossi; Glaucia Mendes Souza
Background -Sucrose content is a highly desirable trait in sugarcane as the worldwide demand for cost-effective biofuels surges. Sugarcane cultivars differ in their capacity to accumulate sucrose and breeding programs routinely perform crosses to identify genotypes able to produce more sucrose. Sucrose content in the mature internodes reach around 20% of the culms dry weight. Genotypes in the populations reflect their genetic program and may display contrasting growth, development, and physiology, all of which affect carbohydrate metabolism. Few studies have profiled gene expression related to sugarcanes sugar content. The identification of signal transduction components and transcription factors that might regulate sugar accumulation is highly desirable if we are to improve this characteristic of sugarcane plants.Results -We have evaluated thirty genotypes that have different Brix (sugar) levels and identified genes differentially expressed in internodes using cDNA microarrays. These genes were compared to existing gene expression data for sugarcane plants subjected to diverse stress and hormone treatments. The comparisons revealed a strong overlap between the drought and sucrose-content datasets and a limited overlap with ABA signaling. Genes associated with sucrose content were extensively validated by qRT-PCR, which highlighted several protein kinases and transcription factors that are likely to be regulators of sucrose accumulation. The data also indicate that aquaporins, as well as lignin biosynthesis and cell wall metabolism genes, are strongly related to sucrose accumulation. Moreover, sucrose-associated genes were shown to be directly responsive to short term sucrose stimuli, confirming their role in sugar-related pathways.Conclusion -Gene expression analysis of sugarcane populations contrasting for sucrose content indicated a possible overlap with drought and cell wall metabolism processes and suggested signaling and transcriptional regulators to be used as molecular markers in breeding programs. Transgenic research is necessary to further clarify the role of the genes and define targets useful for sugarcane improvement programs based on transgenic plants.
Journal of Bacteriology | 2004
Tie Koide; Paulo A. Zaini; Leandro Marcio Moreira; Ricardo Z. N. Vêncio; Adriana Y. Matsukuma; Alan Mitchell Durham; Diva C. Teixeira; Patrícia B. Monteiro; Ana C. R. da Silva; Sergio Verjovski-Almeida; Aline M. da Silva; Suely L. Gomes
Xylella fastidiosa is a phytopathogenic bacterium that causes serious diseases in a wide range of economically important crops. Despite extensive comparative analyses of genome sequences of Xylella pathogenic strains from different plant hosts, nonpathogenic strains have not been studied. In this report, we show that X. fastidiosa strain J1a12, associated with citrus variegated chlorosis (CVC), is nonpathogenic when injected into citrus and tobacco plants. Furthermore, a DNA microarray-based comparison of J1a12 with 9a5c, a CVC strain that is highly pathogenic and had its genome completely sequenced, revealed that 14 coding sequences of strain 9a5c are absent or highly divergent in strain J1a12. Among them, we found an arginase and a fimbrial adhesin precursor of type III pilus, which were confirmed to be absent in the nonpathogenic strain by PCR and DNA sequencing. The absence of arginase can be correlated to the inability of J1a12 to multiply in host plants. This enzyme has been recently shown to act as a bacterial survival mechanism by down-regulating host nitric oxide production. The lack of the adhesin precursor gene is in accordance with the less aggregated phenotype observed for J1a12 cells growing in vitro. Thus, the absence of both genes can be associated with the failure of the J1a12 strain to establish and spread in citrus and tobacco plants. These results provide the first detailed comparison between a nonpathogenic strain and a pathogenic strain of X. fastidiosa, constituting an important step towards understanding the molecular basis of the disease.
Applied and Environmental Microbiology | 2007
Patricia Severino; Olivier Dussurget; Ricardo Z. N. Vêncio; Emilie Dumas; Patricia Garrido; Gabriel Padilla; Pascal Piveteau; Jean-Paul Lemaître; Frank Kunst; Philippe Glaser; Carmen Buchrieser
ABSTRACT Listeria monocytogenes is a food-borne, opportunistic, bacterial pathogen causing a wide spectrum of diseases, including meningitis, septicemia, abortion, and gastroenteritis, in humans and animals. Among the 13 L. monocytogenes serovars described, human listeriosis is mostly associated with strains of serovars 4b, 1/2b, and 1/2a. Within the species L. monocytogenes, three phylogenetic lineages are described. Serovar 1/2a belongs to phylogenetic lineage I, while serovars 4b and 1/2b group in phylogenetic lineage II. To explore the role of gene expression in the adaptation of L. monocytogenes strains of these two major lineages to different environments, as well as in virulence, we performed whole-genome expression profiling of six L. monocytogenes isolates of serovars 4b, 1/2b, and 1/2a of distinct origins, using a newly constructed Listeria multigenome DNA array. Comparison of the global gene expression profiles revealed differences among strains. The expression profiles of two strains having distinct 50% lethal doses, as assessed in the mouse model, were further analyzed. Gene ontology term enrichment analysis of the differentially expressed genes identified differences in protein-, nucleic acid-, carbon metabolism-, and virulence-related gene expression. Comparison of the expression profiles of the core genomes of all strains revealed differences between the two lineages with respect to cell wall synthesis, the stress-related sigma B regulon and virulence-related genes. These findings suggest different patterns of interaction with host cells and the environment, key factors for host colonization and survival in the environment.
Journal of Magnetic Resonance Imaging | 2007
Sergi G. Costafreda; Michael Brammer; Ricardo Z. N. Vêncio; Maria L. Mourão; Luiz A.P. Portela; Cláudio Campi de Castro; Vincent Giampietro; Edson Amaro
To estimate between‐scanner functional MRI (fMRI) reproducibility in a multisite study.
Trends in Parasitology | 2009
Carmen Fernandez-Becerra; Marcio Yamamoto; Ricardo Z. N. Vêncio; Marcus V. G. Lacerda; Anna Rosanas-Urgell; Hernando A. del Portillo
Plasmodium vivax is responsible for more than 100 million clinical cases yearly. Unlike P. falciparum, in which infected red blood cells cytoadhere via variant proteins, avoiding passage through the spleen, P.-vivax-infected reticulocytes seem not to cytoadhere. However, a variant subtelomeric multigene vir family has been identified in P. vivax. Thus, questions remain about how P. vivax circulates through the spleen and the role of Vir proteins. In this review, the importance of the vir multigene superfamily is reviewed in the light of the completion of the entire genome sequence of P. vivax and from data gathered from experimental infections in reticulocyte-prone non-lethal malaria parasites and natural P. vivax infections.
Archive | 2007
Junior Barrera; Roberto M. Cesar; David Correa Martins; Ricardo Z. N. Vêncio; Emilio F. Merino; Marcio Yamamoto; Florencia Leonardi; Carlos Alberto Pereira; Hernando A. del Portillo
The completion of the genome sequence of Plasmodium falciparum revealed that close to 60% of the annotated genome corresponds to hypothetical proteins and that many genes, whose metabolic pathways or biological products are known, have not been predicted from sequence similarity searches. Recently, using global gene expression of the asexual blood stages of P. falciparum at 1 h resolution scale and Discrete Fourier Transform based techniques, it has been demonstrated that many genes are regulated in a single periodic manner during the asexual blood stages. Moreover, by ordering the genes according to the phase of expression, a new list of targets for vaccine and drug development was generated. In the present paper, genes are annotated under a different perspective: a list of functional properties is attributed to networks of genes representing subsystems of the P. falciparum regulatory expression system. The model developed to represent genetic networks, called Probabilistic Genetic Network (PGN), is a Markov chain with some additional properties. This model mimics the properties of a gene as a non-linear stochastic gate and the systems are built by coupling of these gates. Moreover, a tool that integrates mining of dynamical expression signals by PGN design techniques, different databases and biological knowledge, was developed. The applicability of this tool for discovering gene networks of the malaria expression regulation system has been validated using the glycolytic pathway as a “gold-standard”, as well as by creating an apicoplast PGN network. Presently, we are tentatively improving the network design technique before trying to validate results from the apicoplast PGN network through reverse genetics approaches.
BMC Bioinformatics | 2006
Ricardo Z. N. Vêncio; Tie Koide; Suely L. Gomes; Carlos Alberto Pereira
BackgroundThe search for enriched (aka over-represented or enhanced) ontology terms in a list of genes obtained from microarray experiments is becoming a standard procedure for a system-level analysis. This procedure tries to summarize the information focussing on classification designs such as Gene Ontology, KEGG pathways, and so on, instead of focussing on individual genes. Although it is well known in statistics that association and significance are distinct concepts, only the former approach has been used to deal with the ontology term enrichment problem.ResultsBayGO implements a Bayesian approach to search for enriched terms from microarray data. The R source-code is freely available at http://blasto.iq.usp.br/~tkoide/BayGO in three versions: Linux, which can be easily incorporated into pre-existent pipelines; Windows, to be controlled interactively; and as a web-tool. The software was validated using a bacterial heat shock response dataset, since this stress triggers known system-level responses.ConclusionThe Bayesian model accounts for the fact that, eventually, not all the genes from a given category are observable in microarray data due to low intensity signal, quality filters, genes that were not spotted and so on. Moreover, BayGO allows one to measure the statistical association between generic ontology terms and differential expression, instead of working only with the common significance analysis.
BMC Cancer | 2009
Laura E. Pascal; Ricardo Z. N. Vêncio; Laura S. Page; Emily S. Liebeskind; Christina P. Shadle; Pamela Troisch; Bruz Marzolf; Lawrence D. True; Leroy Hood; Alvin Y. Liu
BackgroundProstate cancer cells in primary tumors have been typed CD10-/CD13-/CD24hi/CD26+/CD38lo/CD44-/CD104-. This CD phenotype suggests a lineage relationship between cancer cells and luminal cells. The Gleason grade of tumors is a descriptive of tumor glandular differentiation. Higher Gleason scores are associated with treatment failure.MethodsCD26+ cancer cells were isolated from Gleason 3+3 (G3) and Gleason 4+4 (G4) tumors by cell sorting, and their gene expression or transcriptome was determined by Affymetrix DNA array analysis. Dataset analysis was used to determine gene expression similarities and differences between G3 and G4 as well as to prostate cancer cell lines and histologically normal prostate luminal cells.ResultsThe G3 and G4 transcriptomes were compared to those of prostatic cell types of non-cancer, which included luminal, basal, stromal fibromuscular, and endothelial. A principal components analysis of the various transcriptome datasets indicated a closer relationship between luminal and G3 than luminal and G4. Dataset comparison also showed that the cancer transcriptomes differed substantially from those of prostate cancer cell lines.ConclusionsGenes differentially expressed in cancer are potential biomarkers for cancer detection, and those differentially expressed between G3 and G4 are potential biomarkers for disease stratification given that G4 cancer is associated with poor outcomes. Differentially expressed genes likely contribute to the prostate cancer phenotype and constitute the signatures of these particular cancer cell types.
Journal of Bacteriology | 2006
Tie Koide; Ricardo Z. N. Vêncio; Suely L. Gomes
Xylella fastidiosa is a phytopathogenic bacterium that is responsible for diseases in many economically important crops. Although different strains have been studied, little is known about X. fastidiosa stress responses. One of the better characterized stress responses in bacteria is the heat shock response, which induces the expression of specific genes to prevent protein misfolding and aggregation and to promote degradation of the irreversibly denatured polypeptides. To investigate X. fastidiosa genes involved in the heat shock response, we performed a whole-genome microarray analysis in a time course experiment. Globally, 261 genes were induced (9.7%) and 222 genes were repressed (8.3%). The expression profiles of the differentially expressed genes were grouped, and their expression patterns were validated by quantitative reverse transcription-PCR experiments. We determined the transcription start sites of six heat shock-inducible genes and analyzed their promoter regions, which allowed us to propose a putative consensus for sigma(32) promoters in Xylella and to suggest additional genes as putative members of this regulon. Besides the induction of classical heat shock protein genes, we observed the up-regulation of virulence-associated genes such as vapD and of genes for hemagglutinins, hemolysin, and xylan-degrading enzymes, which may indicate the importance of heat stress to bacterial pathogenesis. In addition, we observed the repression of genes related to fimbriae, aerobic respiration, and protein biosynthesis and the induction of genes related to the extracytoplasmic stress response and some phage-related genes, revealing the complex network of genes that work together in response to heat shock.