Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aline M. da Silva is active.

Publication


Featured researches published by Aline M. da Silva.


Oncogene | 2004

Antisense intronic non-coding RNA levels correlate to the degree of tumor differentiation in prostate cancer

Eduardo M. Reis; Helder I. Nakaya; Rodrigo Louro; F. Canavez; Áurea V F Flatschart; Giulliana T. Almeida; Camila M Egidio; Apuã C.M. Paquola; Abimael A. Machado; Fernanda Festa; Denise Yamamoto; Renato Alvarenga; Camille C. Caldeira da Silva; Glauber Costa Brito; Sérgio D Simon; Carlos Alberto Moreira-Filho; Katia R. M. Leite; Luiz H. Camara-Lopes; Franz S. de Campos; Etel Gimba; Giselle M Vignal; Mari Cleide Sogayar; Marcello A. Barcinski; Aline M. da Silva; Sergio Verjovski-Almeida

A large fraction of transcripts are expressed antisense to introns of known genes in the human genome. Here we show the construction and use of a cDNA microarray platform enriched in intronic transcripts to assess their biological relevance in pathological conditions. To validate the approach, prostate cancer was used as a model, and 27 patient tumor samples with Gleason scores ranging from 5 to 10 were analyzed. We find that a considerably higher fraction (6.6%, [23/346]) of intronic transcripts are significantly correlated (P⩽0.001) to the degree of prostate tumor differentiation (Gleason score) when compared to transcripts from unannotated genomic regions (1%, [6/539]) or from exons of known genes (2%, [27/1369]). Among the top twelve transcripts most correlated to tumor differentiation, six are antisense intronic messages as shown by orientation-specific RT-PCR or Northern blot analysis with strand-specific riboprobe. Orientation-specific real-time RT–PCR with six tumor samples, confirmed the correlation (P=0.024) between the low/high degrees of tumor differentiation and antisense intronic RASSF1 transcript levels. The need to use intron arrays to reveal the transcriptome profile of antisense intronic RNA in cancer has clearly emerged.


Proceedings of the National Academy of Sciences of the United States of America | 2001

The contribution of 700,000 ORF sequence tags to the definition of the human transcriptome

Anamaria A. Camargo; Helena P.B. Samaia; Emmanuel Dias-Neto; Daniel F. Simão; Italo A. Migotto; Marcelo R. S. Briones; Fernando Ferreira Costa; Maria Aparecida Nagai; Sergio Verjovski-Almeida; Marco A. Zago; Luís Eduardo Coelho Andrade; Helaine Carrer; Enilza M. Espreafico; Angelita Habr-Gama; Daniel Giannella-Neto; Gustavo H. Goldman; Arthur Gruber; Christine Hackel; Edna T. Kimura; Rui M. B. Maciel; Suely Kazue Nagahashi Marie; Elizabeth A. L. Martins; Marina P. Nobrega; Maria Luisa Paçó-Larson; Maria Inês de Moura Campos Pardini; Gonçalo Amarante Guimarães Pereira; João Bosco Pesquero; Vanderlei Rodrigues; Silvia Regina Rogatto; Ismael D.C.G. Silva

Open reading frame expressed sequences tags (ORESTES) differ from conventional ESTs by providing sequence data from the central protein coding portion of transcripts. We generated a total of 696,745 ORESTES sequences from 24 human tissues and used a subset of the data that correspond to a set of 15,095 full-length mRNAs as a means of assessing the efficiency of the strategy and its potential contribution to the definition of the human transcriptome. We estimate that ORESTES sampled over 80% of all highly and moderately expressed, and between 40% and 50% of rarely expressed, human genes. In our most thoroughly sequenced tissue, the breast, the 130,000 ORESTES generated are derived from transcripts from an estimated 70% of all genes expressed in that tissue, with an equally efficient representation of both highly and poorly expressed genes. In this respect, we find that the capacity of the ORESTES strategy both for gene discovery and shotgun transcript sequence generation significantly exceeds that of conventional ESTs. The distribution of ORESTES is such that many human transcripts are now represented by a scaffold of partial sequences distributed along the length of each gene product. The experimental joining of the scaffold components, by reverse transcription–PCR, represents a direct route to transcript finishing that may represent a useful alternative to full-length cDNA cloning.


Proceedings of the National Academy of Sciences of the United States of America | 2003

The generation and utilization of a cancer-oriented representation of the human transcriptome by using expressed sequence tags

Helena Brentani; Otavia L. Caballero; Anamaria A. Camargo; Aline M. da Silva; Wilson A. Silva; Emmanuel Dias Neto; Marco Grivet; Arthur Gruber; Pedro Edson Moreira Guimarães; Winston Hide; Christian Iseli; C. Victor Jongeneel; Janet Kelso; Maria Aparecida Nagai; Elida B. Ojopi; Elisson Osório; Eduardo M. Reis; Gregory J. Riggins; Andrew J.G. Simpson; Sandro J. de Souza; Brian J. Stevenson; Robert L. Strausberg; Eloiza Helena Tajara; Sergio Verjovski-Almeida

Whereas genome sequencing defines the genetic potential of an organism, transcript sequencing defines the utilization of this potential and links the genome with most areas of biology. To exploit the information within the human genome in the fight against cancer, we have deposited some two million expressed sequence tags (ESTs) from human tumors and their corresponding normal tissues in the public databases. The data currently define ≈23,500 genes, of which only ≈1,250 are still represented only by ESTs. Examination of the EST coverage of known cancer-related (CR) genes reveals that <1% do not have corresponding ESTs, indicating that the representation of genes associated with commonly studied tumors is high. The careful recording of the origin of all ESTs we have produced has enabled detailed definition of where the genes they represent are expressed in the human body. More than 100,000 ESTs are available for seven tissues, indicating a surprising variability of gene usage that has led to the discovery of a significant number of genes with restricted expression, and that may thus be therapeutically useful. The ESTs also reveal novel nonsynonymous germline variants (although the one-pass nature of the data necessitates careful validation) and many alternatively spliced transcripts. Although widely exploited by the scientific community, vindicating our totally open source policy, the EST data generated still provide extensive information that remains to be systematically explored, and that may further facilitate progress toward both the understanding and treatment of human cancers.


Molecular Microbiology | 1999

Neutral trehalases catalyse intracellular trehalose breakdown in the filamentous fungi Aspergillus nidulans and Neurospora crassa

Christophe d'Enfert; Beatriz M. Bonini; Pio D. A. Zapella; Thierry Fontaine; Aline M. da Silva; Héctor Francisco Terenzi

A cAMP‐activatable Ca2+‐dependent neutral trehalase was identified in germinating conidia of Aspergillus nidulans and Neurospora crassa. Using a PCR approach, A. nidulans and N. crassa genes encoding homologues of the neutral trehalases found in several yeasts were cloned and sequenced. Disruption of the AntreB gene encoding A. nidulans neutral trehalase revealed that it is responsible for intracellular trehalose mobilization at the onset of conidial germination, and that this phenomenon is partially involved in the transient accumulation of glycerol in the germinating conidia. Although trehalose mobilization is not essential for the completion of spore germination and filamentous growth in A. nidulans, it is required to achieve wild‐type germination rates under carbon limitation, suggesting that intracellular trehalose can partially contribute the energy requirements of spore germination. Furthermore, it was shown that trehalose accumulation in A. nidulans can protect germinating conidia against an otherwise lethal heat shock. Because transcription of the treB genes is not increased after a heat shock but induced upon heat shock recovery, it is proposed that, in filamentous fungi, mobilization of trehalose during the return to appropriate growth is promoted by transcriptional and post‐translational regulatory mechanisms, in particular cAMP‐dependent protein kinase‐mediated phosphorylation.


PLOS ONE | 2013

Metagenomic Analysis of a Tropical Composting Operation at the São Paulo Zoo Park Reveals Diversity of Biomass Degradation Functions and Organisms

Layla Farage Martins; Luciana Principal Antunes; Renata C. Pascon; Júlio Cezar de Oliveira; Luciano Antonio Digiampietri; Deibs Barbosa; Bruno Malveira Peixoto; Marcelo A. Vallim; Cristina Viana-Niero; Éric Hainer Ostroski; Guilherme P. Telles; Zanoni Dias; João Batista da Cruz; Luiz Juliano; Sergio Verjovski-Almeida; Aline M. da Silva; João C. Setubal

Composting operations are a rich source for prospection of biomass degradation enzymes. We have analyzed the microbiomes of two composting samples collected in a facility inside the São Paulo Zoo Park, in Brazil. All organic waste produced in the park is processed in this facility, at a rate of four tons/day. Total DNA was extracted and sequenced with Roche/454 technology, generating about 3 million reads per sample. To our knowledge this work is the first report of a composting whole-microbial community using high-throughput sequencing and analysis. The phylogenetic profiles of the two microbiomes analyzed are quite different, with a clear dominance of members of the Lactobacillus genus in one of them. We found a general agreement of the distribution of functional categories in the Zoo compost metagenomes compared with seven selected public metagenomes of biomass deconstruction environments, indicating the potential for different bacterial communities to provide alternative mechanisms for the same functional purposes. Our results indicate that biomass degradation in this composting process, including deconstruction of recalcitrant lignocellulose, is fully performed by bacterial enzymes, most likely by members of the Clostridiales and Actinomycetales orders.


BMC Genomics | 2010

Novel insights into the genomic basis of citrus canker based on the genome sequences of two strains of Xanthomonas fuscans subsp. aurantifolii

Leandro Marcio Moreira; Nalvo F. Almeida; Neha Potnis; Luciano Antonio Digiampietri; Said Sadique Adi; Julio Cesar Bortolossi; Ana C. R. da Silva; Aline M. da Silva; Fabrício Edgar de Moraes; Júlio César Silva de Oliveira; Robson F. de Souza; Agda Paula Facincani; André Luiz Nonato Ferraz; Maria Inês Tiraboschi Ferro; Luiz Roberto Furlan; Daniele Fernanda Jovino Gimenez; Jeffrey B. Jones; Elliot W. Kitajima; Marcelo Luiz de Laia; Rui P Leite; Milton Yutaka Nishiyama; Júlio Rodrigues Neto; Letícia A. S. Nociti; David J. Norman; Éric Hainer Ostroski; Haroldo Alves Pereira Jr.; Brian J. Staskawicz; Renata Izabel Dozzi Tezza; Jesus Aparecido Ferro; Boris A. Vinatzer

BackgroundCitrus canker is a disease that has severe economic impact on the citrus industry worldwide. There are three types of canker, called A, B, and C. The three types have different phenotypes and affect different citrus species. The causative agent for type A is Xanthomonas citri subsp. citri, whose genome sequence was made available in 2002. Xanthomonas fuscans subsp. aurantifolii strain B causes canker B and Xanthomonas fuscans subsp. aurantifolii strain C causes canker C.ResultsWe have sequenced the genomes of strains B and C to draft status. We have compared their genomic content to X. citri subsp. citri and to other Xanthomonas genomes, with special emphasis on type III secreted effector repertoires. In addition to pthA, already known to be present in all three citrus canker strains, two additional effector genes, xopE3 and xopAI, are also present in all three strains and are both located on the same putative genomic island. These two effector genes, along with one other effector-like gene in the same region, are thus good candidates for being pathogenicity factors on citrus. Numerous gene content differences also exist between the three cankers strains, which can be correlated with their different virulence and host range. Particular attention was placed on the analysis of genes involved in biofilm formation and quorum sensing, type IV secretion, flagellum synthesis and motility, lipopolysacharide synthesis, and on the gene xacPNP, which codes for a natriuretic protein.ConclusionWe have uncovered numerous commonalities and differences in gene content between the genomes of the pathogenic agents causing citrus canker A, B, and C and other Xanthomonas genomes. Molecular genetics can now be employed to determine the role of these genes in plant-microbe interactions. The gained knowledge will be instrumental for improving citrus canker control.


Journal of Bacteriology | 2004

DNA Microarray-Based Genome Comparison of a Pathogenic and a Nonpathogenic Strain of Xylella fastidiosa Delineates Genes Important for Bacterial Virulence

Tie Koide; Paulo A. Zaini; Leandro Marcio Moreira; Ricardo Z. N. Vêncio; Adriana Y. Matsukuma; Alan Mitchell Durham; Diva C. Teixeira; Patrícia B. Monteiro; Ana C. R. da Silva; Sergio Verjovski-Almeida; Aline M. da Silva; Suely L. Gomes

Xylella fastidiosa is a phytopathogenic bacterium that causes serious diseases in a wide range of economically important crops. Despite extensive comparative analyses of genome sequences of Xylella pathogenic strains from different plant hosts, nonpathogenic strains have not been studied. In this report, we show that X. fastidiosa strain J1a12, associated with citrus variegated chlorosis (CVC), is nonpathogenic when injected into citrus and tobacco plants. Furthermore, a DNA microarray-based comparison of J1a12 with 9a5c, a CVC strain that is highly pathogenic and had its genome completely sequenced, revealed that 14 coding sequences of strain 9a5c are absent or highly divergent in strain J1a12. Among them, we found an arginase and a fimbrial adhesin precursor of type III pilus, which were confirmed to be absent in the nonpathogenic strain by PCR and DNA sequencing. The absence of arginase can be correlated to the inability of J1a12 to multiply in host plants. This enzyme has been recently shown to act as a bacterial survival mechanism by down-regulating host nitric oxide production. The lack of the adhesin precursor gene is in accordance with the less aggregated phenotype observed for J1a12 cells growing in vitro. Thus, the absence of both genes can be associated with the failure of the J1a12 strain to establish and spread in citrus and tobacco plants. These results provide the first detailed comparison between a nonpathogenic strain and a pathogenic strain of X. fastidiosa, constituting an important step towards understanding the molecular basis of the disease.


BMC Biology | 2007

Androgen responsive intronic non-coding RNAs

Rodrigo Louro; Helder I. Nakaya; Paulo P Amaral; Fernanda Festa; Mari Cleide Sogayar; Aline M. da Silva; Sergio Verjovski-Almeida; Eduardo M. Reis

BackgroundTranscription of large numbers of non-coding RNAs originating from intronic regions of human genes has been recently reported, but mechanisms governing their biosynthesis and biological functions are largely unknown. In this work, we evaluated the existence of a common mechanism of transcription regulation shared by protein-coding mRNAs and intronic RNAs by measuring the effect of androgen on the transcriptional profile of a prostate cancer cell line.ResultsUsing a custom-built cDNA microarray enriched in intronic transcribed sequences, we found 39 intronic non-coding RNAs for which levels were significantly regulated by androgen exposure. Orientation-specific reverse transcription-PCR indicated that 10 of the 13 were transcribed in the antisense direction. These transcripts are long (0.5–5 kb), unspliced and apparently do not code for proteins. Interestingly, we found that the relative levels of androgen-regulated intronic transcripts could be correlated with the levels of the corresponding protein-coding gene (asGAS6 and asDNAJC3) or with the alternative usage of exons (asKDELR2 and asITGA6) in the corresponding protein-coding transcripts. Binding of the androgen receptor to a putative regulatory region upstream from asMYO5A, an androgen-regulated antisense intronic transcript, was confirmed by chromatin immunoprecipitation.ConclusionAltogether, these results indicate that at least a fraction of naturally transcribed intronic non-coding RNAs may be regulated by common physiological signals such as hormones, and further corroborate the notion that the intronic complement of the transcriptome play functional roles in the human gene-expression program.


Cancer Research | 2005

Large-scale Transcriptome Analyses Reveal New Genetic Marker Candidates of Head, Neck, and Thyroid Cancer

Eduardo M. Reis; Elida B. Ojopi; Fernando Lopes Alberto; Paula Rahal; Fernando Tsukumo; Ulises M. Mancini; Gustavo Guimarães; Glória M. Thompson; Cléber P. Camacho; Elisabete Miracca; André Lopes Carvalho; Abimael A. Machado; Apuã C.M. Paquola; Janete M. Cerutti; Aline M. da Silva; Gonçalo Amarante Guimarães Pereira; Sandro Roberto Valentini; Maria Aparecida Nagai; Luiz Paulo Kowalski; Sergio Verjovski-Almeida; Eloiza Helena Tajara; Emmanuel Dias-Neto

A detailed genome mapping analysis of 213,636 expressed sequence tags (EST) derived from nontumor and tumor tissues of the oral cavity, larynx, pharynx, and thyroid was done. Transcripts matching known human genes were identified; potential new splice variants were flagged and subjected to manual curation, pointing to 788 putatively new alternative splicing isoforms, the majority (75%) being insertion events. A subset of 34 new splicing isoforms (5% of 788 events) was selected and 23 (68%) were confirmed by reverse transcription-PCR and DNA sequencing. Putative new genes were revealed, including six transcripts mapped to well-studied chromosomes such as 22, as well as transcripts that mapped to 253 intergenic regions. In addition, 2,251 noncoding intronic RNAs, eventually involved in transcriptional regulation, were found. A set of 250 candidate markers for loss of heterozygosis or gene amplification was selected by identifying transcripts that mapped to genomic regions previously known to be frequently amplified or deleted in head, neck, and thyroid tumors. Three of these markers were evaluated by quantitative reverse transcription-PCR in an independent set of individual samples. Along with detailed clinical data about tumor origin, the information reported here is now publicly available on a dedicated Web site as a resource for further biological investigation. This first in silico reconstruction of the head, neck, and thyroid transcriptomes points to a wealth of new candidate markers that can be used for future studies on the molecular basis of these tumors. Similar analysis is warranted for a number of other tumors for which large EST data sets are available.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Xylella fastidiosa outer membrane vesicles modulate plant colonization by blocking attachment to surfaces.

Michael Ionescu; Paulo A. Zaini; Clelia Baccari; Sophia Tran; Aline M. da Silva; Steven E. Lindow

Significance Release of outer membrane vesicles (OMVs) is a general feature of Gram-negative bacteria. Most studies have addressed the mechanisms of their formation or the cargo they can carry, but other roles remain to be explored further. Here we provide evidence for a novel role for OMVs in Xylella fastidiosa, a bacterial pathogen that colonizes the xylem of important crop plants. OMVs, whose production is suppressed by a quorum-sensing system, serve as an autoinhibitor of cell adhesion to surfaces, thereby blocking attachment-driven biofilm formation that would restrict movement within the xylem and thus colonization of plants. The ubiquity of OMV formation in the bacterial world suggests that these extracellular products may have alternative roles that might modulate movement and biofilm formation. Outer membrane vesicles (OMVs) of Gram-negative bacteria have been studied intensively in recent years, primarily in their role in delivering virulence factors and antigens during pathogenesis. However, the near ubiquity of their production suggests that they may play other roles, such as responding to envelope stress or trafficking various cargoes to prevent dilution or degradation by other bacterial species. Here we show that OMVs produced by Xylella fastidiosa, a xylem-colonizing plant pathogenic bacterium, block its interaction with various surfaces such as the walls of xylem vessels in host plants. The release of OMVs was suppressed by the diffusible signal factor-dependent quorum-sensing system, and a X. fastidiosa ΔrpfF mutant in which quorum signaling was disrupted was both much more virulent to plants and less adhesive to glass and plant surfaces than the WT strain. The higher virulence of the ΔrpfF mutant was associated with fivefold higher numbers of OMVs recovered from xylem sap of infected plants. The frequency of attachment of X. fastidiosa to xylem vessels was 20-fold lower in the presence of OMVs than in their absence. OMV production thus is a strategy used by X. fastidiosa cells to adjust attachment to surfaces in its transition from adhesive cells capable of insect transmission to an “exploratory” lifestyle for systemic spread within the plant host which would be hindered by attachment. OMV production may contribute to the movement of other bacteria in porous environments by similarly reducing their contact with environmental constituents.

Collaboration


Dive into the Aline M. da Silva's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paulo A. Zaini

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suely L. Gomes

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge