Richard A. Dean
University of British Columbia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Richard A. Dean.
Molecular & Cellular Proteomics | 2007
Richard A. Dean; Christopher M. Overall
Elucidation of protease substrate degradomes is essential for understanding the function of proteolytic pathways in the protease web and how proteases regulate cell function. We identified matrix metalloproteinase-2 (MMP-2) cleaved proteins, solubilized pericellular matrix, and shed cellular ectodomains in the cellular context using a new multiplex proteomics approach. Tryptic peptides of intact and cleaved proteins, collected from conditioned culture medium of Mmp2−/− fibroblasts expressing low levels of transfected active human MMP-2 at different time points, were amine-labeled with iTRAQ™ mass tags. Peptide identification and relative quantitation between active and inactive protease transfectants were achieved following tag fragmentation during tandem MS. Known substrates of MMP-2 were identified thereby validating this technique with many novel MMP-2 substrates including the CX3CL1 chemokine fractalkine, osteopontin, galectin-1, and HSP90α also being identified and biochemically confirmed. In comparison with ICAT-labeling and quantitation, 8–9-fold more proteins and substrates were identified by iTRAQ. “Peptide mapping,” the location of multiple peptides identified within a particular protein by iTRAQ in combination with their relative abundance ratios, enabled the domain shed and general location of the cleavage site to be identified in the native cellular substrate. Hence this advance in degradomics cell-based screens for native protein substrates casts new light on the roles for proteases in cell function.
PLOS ONE | 2007
Angus M. Tester; Jennifer H. Cox; Andrea R. Connor; Amanda E. Starr; Richard A. Dean; Xose S. Puente; Carlos López-Otín; Christopher M. Overall
We identify matrix metalloproteinase (MMP)-8, the polymorphonuclear (PMN) leukocyte collagenase, as a critical mediator initiating lipopolysaccharide (LPS)-responsiveness in vivo. PMN infiltration towards LPS is abrogated in Mmp8-null mice. MMP-8 cleaves LPS-induced CXC chemokine (LIX) at Ser4∼Val5 and Lys79∼Arg80. LIX bioactivity is increased upon N-terminal cleavage, enhancing intracellular calcium mobilization and chemotaxis upon binding its cognate receptor, CXCR2. As there is no difference in PMN chemotaxis in Mmp8-null mice compared with wild-type mice towards synthetic analogues of MMP-8-cleaved LIX, MMP-8 is not essential for extravasation or cell migration in collagenous matrices in vivo. However, with biochemical redundancy between MMPs 1, 2, 9, and 13, which also cleave LIX at position 4∼5, it was surprising to observe such a markedly reduced PMN infiltration towards LPS and LIX in Mmp8-/- mice. This lack of physiological redundancy in vivo identifies MMP-8 as a key mediator in the regulation of innate immunity. Comparable results were found with CXCL8/IL-8 and CXCL5/ENA-78, the human orthologues of LIX. MMP-8 cleaves CXCL8 at Arg5-Ser6 and at Val7-Leu8 in CXCL5 to activate respective chemokines. Hence, rather than collagen, these PMN chemoattractants are important MMP-8 substrates in vivo; PMN-derived MMP-8 cleaves and activates LIX to execute an in cis PMN-controlled feed-forward mechanism to orchestrate the initial inflammatory response and promote LPS responsiveness in tissue.
Molecular and Cellular Biology | 2007
Richard A. Dean; Georgina S. Butler; Yamina Hamma-Kourbali; Jean Delbé; David R. Brigstock; José Courty; Christopher M. Overall
ABSTRACT Matrix metalloproteinases (MMPs) exert both pro- and antiangiogenic functions by the release of cytokines or proteolytically generated angiogenic inhibitors from extracellular matrix and basement membrane remodeling. In the Mmp2−/− mouse neovascularization is greatly reduced, but the mechanistic aspects of this remain unclear. Using isotope-coded affinity tag labeling of proteins analyzed by multidimensional liquid chromatography and tandem mass spectrometry we explored proteome differences between Mmp2−/− cells and those rescued by MMP-2 transfection. Proteome signatures that are hallmarks of proteolysis revealed cleavage of many known MMP-2 substrates in the cellular context. Proteomic evidence of MMP-2 processing of novel substrates was found. Insulin-like growth factor binding protein 6, follistatin-like 1, and cystatin C protein cleavage by MMP-2 was biochemically confirmed, and the cleavage sites in heparin affin regulatory peptide (HARP; pleiotrophin) and connective tissue growth factor (CTGF) were sequenced by matrix-assisted laser desorption ionization-time of flight mass spectrometry. MMP-2 processing of HARP and CTGF released vascular endothelial growth factor (VEGF) from angiogenic inhibitory complexes. The cleaved HARP N-terminal domain increased HARP-induced cell proliferation, whereas the HARP C-terminal domain was antagonistic and decreased cell proliferation and migration. Hence the unmasking of cytokines, such as VEGF, by metalloproteinase processing of their binding proteins is a new mechanism in the control of cytokine activation and angiogenesis.
Blood | 2008
Richard A. Dean; Jennifer H. Cox; Caroline L. Bellac; Alain Doucet; Amanda E. Starr; Christopher M. Overall
Through the activity of macrophage-specific matrix metalloproteinase-12 (MMP-12), we found that macrophages dampen the lipopolysaccharide (LPS)-induced influx of polymorphonuclear leukocytes (PMNs)-thus providing a new mechanism for the termination of PMN recruitment in acute inflammation. MMP-12 specifically cleaves human ELR(+) CXC chemokines (CXCL1, -2, -3, -5, and -8) at E-LR, the critical receptor-binding motif or, for CXCL6, carboxyl-terminal to it. Murine (m) MMP-12 also cleaves mCXCL1, -2, and -3 at E-LR. MMP-12-cleaved mCXCL2 (macrophage-inflammatory protein-2 [MIP-2]) and mCXCL3 (dendritic cell inflammatory protein-1 [DCIP-1]) lost chemotactic activity. Furthermore, MMP-12 processed and inactivated monocyte chemotactic proteins CCL2, -7, -8, and -13 at position 4-5 generating CCR antagonists. Indeed, PMNs and macrophages in bronchoalveolar lavage fluid were significantly increased 72 hours after intranasal instillation of LPS in Mmp12(-/-) mice compared with wild type. Specificity occurred at 2 levels. Macrophage MMP-1 and MMP-9 did not cleave in the ELR motif. Second, unlike human ELR(+)CXC chemokines, mCXCL5 (LPS-induced CXC chemokine [LIX]) was not inactivated. Rather, mMMP-12 cleavage at Ser4-Val5 activated the chemokine, promoting enhanced PMN early infiltration in wild-type mice compared with Mmp12(-/-) mice 8 hours after LPS challenge in air pouches. We propose that the macrophage, specifically through MMP-12, assists in orchestrating the regulation of acute inflammatory responses by precise proteolysis of ELR(+)CXC and CC chemokines.
Molecular and Cellular Biology | 2008
Georgina S. Butler; Richard A. Dean; Eric M. Tam; Christopher M. Overall
ABSTRACT Broad-spectrum matrix metalloproteinase (MMP) inhibitors (MMPI) were unsuccessful in cancer clinical trials, partly due to side effects resulting from limited knowledge of the full repertoire of MMP substrates, termed the substrate degradome, and hence the in vivo functions of MMPs. To gain further insight into the degradome of MMP-14 (membrane type 1 MMP) an MMPI, prinomastat (drug code AG3340), was used to reduce proteolytic processing and ectodomain shedding in human MDA-MB-231 breast cancer cells transfected with MMP-14. We report a quantitative proteomic evaluation of the targets and effects of the inhibitor in this cell-based system. Proteins in cell-conditioned medium (the secretome) and membrane fractions with levels that were modulated by the MMPI were identified by isotope-coded affinity tag (ICAT) labeling and tandem mass spectrometry. Comparisons of the expression of MMP-14 with that of a vector control resulted in increased MMP-14/vector ICAT ratios for many proteins in conditioned medium, indicating MMP-14-mediated ectodomain shedding. Following MMPI treatment, the MMPI/vehicle ICAT ratio was reversed, suggesting that MMP-14-mediated shedding of these proteins was blocked by the inhibitor. The reduction in shedding or the release of substrates from pericellular sites in the presence of the MMPI was frequently accompanied by the accumulation of the protein in the plasma membrane, as indicated by high MMPI/vehicle ICAT ratios. Considered together, this is a strong predictor of biologically relevant substrates cleaved in the cellular context that led to the identification of many undescribed MMP-14 substrates, 20 of which we validated biochemically, including DJ-1, galectin-1, Hsp90α, pentraxin 3, progranulin, Cyr61, peptidyl-prolyl cis-trans isomerase A, and dickkopf-1. Other proteins with altered levels, such as Kunitz-type protease inhibitor 1 and beta-2-microglobulin, were not substrates in biochemical assays, suggesting an indirect affect of the MMPI, which might be important in drug development as biomarkers or, in preclinical phases, to predict systemic drug actions and adverse side effects. Hence, this approach describes the dynamic pattern of cell membrane ectodomain shedding and its perturbation upon metalloproteinase drug treatment.
Journal of Biological Chemistry | 2008
Jennifer H. Cox; Richard A. Dean; Clive R. Roberts; Christopher M. Overall
The CXCR3 chemokine receptor regulates the migration of Th1 lymphocytes and responds to three ligands: CXCL9/MIG, CXCL10/IP-10, and CXCL11/I-TAC. We screened for potential regulation of T cell responses by matrix metalloproteinase (MMP) processing of these important chemokines. The most potent of the CXCR3 ligands, CXCL11, was identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry as a substrate of the PMN-specific MMP-8, macrophage-specific MMP-12, and the general leukocyte MMP-9. The 73-amino acid residue CXCL11 is processed at both the amino and carboxyl termini to generate CXCL11-(5–73), -(5–63), and -(5–58) forms. NH2-terminal truncation results in loss of agonistic properties, as shown in calcium mobilization and chemotaxis experiments using CXCR3 transfectants and human T lymphocytes. Moreover, CXCL11-(5–73) is a CXCR3 antagonist and interestingly shows enhanced affinity to heparin. However, upon COOH-terminal truncation to position 58 there is loss of antagonist activity and heparin binding. Together this highlights an unexpected site for receptor interaction and that the carboxyl terminus is critical for glycosaminoglycan binding, an essential function for the formation of chemokine gradients in vivo. Hence, MMP activity might regulate CXCL11 tissue gradients in two ways. First, the potential of CXCL11-(5–73) to compete active CXCL11 from glycosaminoglycans might lead to the formation of an antagonistic haptotactic chemokine gradient. Second, upon further truncation, MMPs disperse the CXCL11 gradients in a novel way by proteolytic loss of a COOH-terminal GAG binding site. Hence, these results reveal potential new roles in down-regulating Th1 lymphocyte chemoattraction through MMP processing of CXCL11.
Methods of Molecular Biology | 2010
Georgina S. Butler; Richard A. Dean; Charlotte J. Morrison; Christopher M. Overall
Identification of protease substrates is essential to understand the functional consequences of normal proteolytic processing and dysregulated proteolysis in disease. Quantitative proteomics and mass spectrometry can be used to identify protease substrates in the cellular context. Here we describe the use of two protein labeling techniques, Isotope-Coded Affinity Tags (ICAT and Isobaric Tags for Relative and Absolute Quantification (iTRAQ), which we have used successfully to identify novel matrix metalloproteinase (MMP) substrates in cell culture systems (1-4). ICAT and iTRAQ can label proteins and protease cleavage products of secreted proteins, protein domains shed from the cell membrane or pericellular matrix of protease-transfected cells that have accumulated in conditioned medium, or cell surface proteins in membrane preparations; isotopically distinct labels are used for control cells. Tryptic digestion and tandem mass spectrometry of the generated fragments enable sequencing of differentially labeled but otherwise identical pooled peptides. The isotopic tag, which is unique for each label, identifies the peptides originating from each sample, for instance, protease-transfected or control cells, and comparison of the peak areas enables relative quantification of the peptide in each sample. Thus proteins present in altered amounts between protease-expressing and null cells are implicated as protease substrates and can be further validated as such.
Methods of Molecular Biology | 2009
Georgina S. Butler; Richard A. Dean; D. David Smith; Christopher M. Overall
The modification of cell surface proteins by plasma membrane and soluble proteases is important for physiological and pathological processes. Methods to identify shed and soluble substrates are crucial to further define the substrate repertoire, termed the substrate degradome, of individual proteases. Identifying protease substrates is essential to elucidate protease function and involvement in different homeostatic and disease pathways. This characterisation is also crucial for drug target identification and validation, which would then allow the rational design of specific targeted inhibitors for therapeutic intervention. We describe two methods for identifying and quantifying shed cell surface protease targets in cultured cells utilising Isotope-Coded Affinity Tags (ICAT) and Isobaric Tags for Relative and Absolute Quantification (iTRAQ). As a model system to develop these techniques, we chose a cell-membrane expressed matrix metalloproteinase, MMP-14, but the concepts can be applied to proteases of other classes. By over-expression, or conversely inhibition, of a particular protease with careful selection of control conditions (e.g. vector or inactive protease) and differential labelling, shed proteins can be identified and quantified by mass spectrometry (MS), MS/MS fragmentation and database searching.
Current protocols in protein science | 2007
Richard A. Dean; Derek Smith; Christopher M. Overall
Identification of protease substrates is essential to identify and understand the functional consequences of normal and dysregulated proteolysis in disease on the proteome. Isobaric tags for relative and absolute quantification (iTRAQ) can be used to identify novel protease substrates in the cellular context. An amine‐targeted iTRAQ tag labels tryptic peptides generated from the proteins and protease cleavage products of secreted proteins, as well as protein domains shed from the cell membrane or pericellular matrix of protease‐transfected cells that have accumulated in conditioned medium; a second iTRAQ tag is used for control cells. MS/MS fragmentation enables sequencing of the pooled pairs of differently labeled but identical peptides and generates a low mass signature ion peak unique for each label. This signature ion peak identifies the peptides originating from the protease‐transfected or control cells; comparison of the peak areas enables relative quantitation of the peptide between the samples. Curr. Protoc. Protein Sci. 49:21.18.1‐21.18.12.
Archive | 2015
Yohannes Tesfaigzi; Karin Rudolph; Carole A. Conn; Darryl C. Zeldin; Michelle A. Carey; Jeffrey W. Card; James W. Voltz; Dori R. Germolec; Kenneth S. Korach; Christopher M. Overall; Richard A. Dean; Jennifer H. Cox; Caroline L. Bellac; Alain Doucet; Amanda E. Starr; Dick Heederik; Lidwien Am Smit