Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alain Doucet is active.

Publication


Featured researches published by Alain Doucet.


Nature Biotechnology | 2010

Isotopic labeling of terminal amines in complex samples identifies protein N-termini and protease cleavage products

Oded Kleifeld; Alain Doucet; Ulrich auf dem Keller; Anna Prudova; Oliver Schilling; Rajesh K. Kainthan; Amanda E. Starr; Leonard J. Foster; Jayachandran N. Kizhakkedathu; Christopher M. Overall

Effective proteome-wide strategies that distinguish the N-termini of proteins from the N-termini of their protease cleavage products would accelerate identification of the substrates of proteases with broad or unknown specificity. Our approach, named terminal amine isotopic labeling of substrates (TAILS), addresses this challenge by using dendritic polyglycerol aldehyde polymers that remove tryptic and C-terminal peptides. We analyze unbound naturally acetylated, cyclized or labeled N-termini from proteins and their protease cleavage products by tandem mass spectrometry, and use peptide isotope quantification to discriminate between the substrates of the protease of interest and the products of background proteolysis. We identify 731 acetylated and 132 cyclized N-termini, and 288 matrix metalloproteinase (MMP)-2 cleavage sites in mouse fibroblast secretomes. We further demonstrate the potential of our strategy to link proteases with defined biological pathways in complex samples by analyzing mouse inflammatory bronchoalveolar fluid and showing that expression of the poorly defined breast cancer protease MMP-11 in MCF-7 human breast cancer cells cleaves both endoplasmin and the immunomodulator and apoptosis inducer galectin-1.


Blood | 2008

Macrophage-specific metalloelastase (MMP-12) truncates and inactivates ELR CXC chemokines and generates CCL2, -7, -8, and -13 antagonists: potential role of the macrophage in terminating polymorphonuclear leukocyte influx

Richard A. Dean; Jennifer H. Cox; Caroline L. Bellac; Alain Doucet; Amanda E. Starr; Christopher M. Overall

Through the activity of macrophage-specific matrix metalloproteinase-12 (MMP-12), we found that macrophages dampen the lipopolysaccharide (LPS)-induced influx of polymorphonuclear leukocytes (PMNs)-thus providing a new mechanism for the termination of PMN recruitment in acute inflammation. MMP-12 specifically cleaves human ELR(+) CXC chemokines (CXCL1, -2, -3, -5, and -8) at E-LR, the critical receptor-binding motif or, for CXCL6, carboxyl-terminal to it. Murine (m) MMP-12 also cleaves mCXCL1, -2, and -3 at E-LR. MMP-12-cleaved mCXCL2 (macrophage-inflammatory protein-2 [MIP-2]) and mCXCL3 (dendritic cell inflammatory protein-1 [DCIP-1]) lost chemotactic activity. Furthermore, MMP-12 processed and inactivated monocyte chemotactic proteins CCL2, -7, -8, and -13 at position 4-5 generating CCR antagonists. Indeed, PMNs and macrophages in bronchoalveolar lavage fluid were significantly increased 72 hours after intranasal instillation of LPS in Mmp12(-/-) mice compared with wild type. Specificity occurred at 2 levels. Macrophage MMP-1 and MMP-9 did not cleave in the ELR motif. Second, unlike human ELR(+)CXC chemokines, mCXCL5 (LPS-induced CXC chemokine [LIX]) was not inactivated. Rather, mMMP-12 cleavage at Ser4-Val5 activated the chemokine, promoting enhanced PMN early infiltration in wild-type mice compared with Mmp12(-/-) mice 8 hours after LPS challenge in air pouches. We propose that the macrophage, specifically through MMP-12, assists in orchestrating the regulation of acute inflammatory responses by precise proteolysis of ELR(+)CXC and CC chemokines.


Nature Protocols | 2011

Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates

Oded Kleifeld; Alain Doucet; Anna Prudova; Ulrich auf dem Keller; Magda Gioia; Jayachandran N. Kizhakkedathu; Christopher M. Overall

Analysis of the sequence and nature of protein N termini has many applications. Defining the termini of proteins for proteome annotation in the Human Proteome Project is of increasing importance. Terminomics analysis of protease cleavage sites in degradomics for substrate discovery is a key new application. Here we describe the step-by-step procedures for performing terminal amine isotopic labeling of substrates (TAILS), a 2- to 3-d (depending on method of labeling) high-throughput method to identify and distinguish protease-generated neo–N termini from mature protein N termini with all natural modifications with high confidence. TAILS uses negative selection to enrich for all N-terminal peptides and uses primary amine labeling-based quantification as the discriminating factor. Labeling is versatile and suited to many applications, including biochemical and cell culture analyses in vitro; in vivo analyses using tissue samples from animal and human sources can also be readily performed. At the protein level, N-terminal and lysine amines are blocked by dimethylation (formaldehyde/sodium cyanoborohydride) and isotopically labeled by incorporating heavy and light dimethylation reagents or stable isotope labeling with amino acids in cell culture labels. Alternatively, easy multiplex sample analysis can be achieved using amine blocking and labeling with isobaric tags for relative and absolute quantification, also known as iTRAQ. After tryptic digestion, N-terminal peptide separation is achieved using a high-molecular-weight dendritic polyglycerol aldehyde polymer that binds internal tryptic and C-terminal peptides that now have N-terminal alpha amines. The unbound naturally blocked (acetylation, cyclization, methylation and so on) or labeled mature N-terminal and neo-N-terminal peptides are recovered by ultrafiltration and analyzed by tandem mass spectrometry (MS/MS). Hierarchical substrate winnowing discriminates substrates from the background proteolysis products and non-cleaved proteins by peptide isotope quantification and bioinformatics search criteria.


Molecular & Cellular Proteomics | 2008

Metadegradomics Toward in Vivo Quantitative Degradomics of Proteolytic Post-translational Modifications of the Cancer Proteome

Alain Doucet; Georgina S. Butler; David Rodríguez; Anna Prudova; Christopher M. Overall

Post-translational modifications enable extra layers of control of the proteome, and perhaps the most important is proteolysis, a major irreversible modification affecting every protein. The intersection of the protease web with a proteome sculpts that proteome, dynamically modifying its state and function. Protease expression is distorted in cancer, so perturbing signaling pathways and the secretome of the tumor and reactive stromal cells. Indeed many cancer biomarkers are stable proteolytic fragments. It is crucial to determine which proteases contribute to the pathology versus their roles in homeostasis and in mitigating cancer. Thus the full substrate repertoire of a protease, termed the substrate degradome, must be deciphered to define protease function and to identify drug targets. Degradomics has been used to identify many substrates of matrix metalloproteinases that are important proteases in cancer. Here we review recent degradomics technologies that allow for the broadly applicable identification and quantification of proteases (the protease degradome) and their activity state, substrates, and interactors. Quantitative proteomics using stable isotope labeling, such as ICAT, isobaric tags for relative and absolute quantification (iTRAQ), and stable isotope labeling by amino acids in cell culture (SILAC), can reveal protease substrates by taking advantage of the natural compartmentalization of membrane proteins that are shed into the extracellular space. Identifying the actual cleavage sites in a complex proteome relies on positional proteomics and utilizes selection strategies to enrich for protease-generated neo-N termini of proteins. In so doing, important functional information is generated. Finally protease substrates and interactors can be identified by interactomics based on affinity purification of protease complexes using exosite scanning and inactive catalytic domain capture strategies followed by mass spectrometry analysis. At the global level, the N terminome analysis of whole communities of proteases in tissues and organs in vivo provides a full scale understanding of the protease web and the web-sculpted proteome, so defining metadegradomics.Post-translational modifications enable extra layers of control of the proteome, and perhaps the most important is proteolysis, a major irreversible modification affecting every protein. The intersection of the protease web with a proteome sculpts that proteome, dynamically modifying its state and function. Protease expression is distorted in cancer, so perturbing signaling pathways and the secretome of the tumor and reactive stromal cells. Indeed many cancer biomarkers are stable proteolytic fragments. It is crucial to determine which proteases contribute to the pathology versus their roles in homeostasis and in mitigating cancer. Thus the full substrate repertoire of a protease, termed the substrate degradome, must be deciphered to define protease function and to identify drug targets. Degradomics has been used to identify many substrates of matrix metalloproteinases that are important proteases in cancer. Here we review recent degradomics technologies that allow for the broadly applicable identification and quantification of proteases (the protease degradome) and their activity state, substrates, and interactors. Quantitative proteomics using stable isotope labeling, such as ICAT, isobaric tags for relative and absolute quantification (iTRAQ), and stable isotope labeling by amino acids in cell culture (SILAC), can reveal protease substrates by taking advantage of the natural compartmentalization of membrane proteins that are shed into the extracellular space. Identifying the actual cleavage sites in a complex proteome relies on positional proteomics and utilizes selection strategies to enrich for protease-generated neo-N termini of proteins. In so doing, important functional information is generated. Finally protease substrates and interactors can be identified by interactomics based on affinity purification of protease complexes using exosite scanning and inactive catalytic domain capture strategies followed by mass spectrometry analysis. At the global level, the N terminome analysis of whole communities of proteases in tissues and organs in vivo provides a full scale understanding of the protease web and the web-sculpted proteome, so defining metadegradomics.


Molecular Aspects of Medicine | 2008

Protease proteomics: revealing protease in vivo functions using systems biology approaches.

Alain Doucet; Christopher M. Overall

Proteases irreversibly modify proteins by cleaving their amide bonds and are implicated in virtually every important biological process such as immunity, development and tissue repair. Accordingly, it is easy to see that deregulated proteolysis is a pathognomic feature of many diseases. Most of the current information available on proteases was acquired using in vitro methods, which reveals molecular structure, enzyme kinetics and active-site specificity. However, considerably less is known about the relevant biological functions and combined roles of proteases in moulding the proteome. Although models using genetically modified animals are powerful, they are slow to develop, they can be difficult to interpret, and while useful, they remain only models of human disease. Therefore, to understand how proteases accomplish their tasks in organisms and how they participate in pathology, we need to elucidate the protease degradome-the repertoire of proteases expressed by a cell, a tissue or an organism at a particular time-their expression level, activation state, their biological substrates, also known as the substrate degradome-the repertoire of substrates for each protease-and the effect of the activity of each protease on the pathways of the system under study. Achieving this goal is challenging because several proteases might cleave the same protein, and proteases also form pathways and interact to form the protease web [Overall, C.M., Kleifeld, O., 2006. Tumour microenvironment - opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat. Rev. Cancer 6 (3), 227-239]. Hence, the net proteolytic potential of the degradome at a particular time on a substrate and pathway must also be understood. Proteomics offers one of the few routes to the understanding of proteolysis in complex in vivo systems and especially in man where genetic manipulations are impossible. The aim of this chapter is to review methods and tools that allow researchers to study protease biological functions using proteomics and mass spectrometry. We describe methods to assess protease expression at the messenger RNA level using DNA microarrays and at the protein level using mass spectrometry-based proteomics. We also review methods to reveal and quantify the activity state of proteases and to identify their biological substrates. The information acquired using these high throughput, high content techniques can then be interpreted with different bioinformatics approaches to reveal the effects of proteolysis on the system under study. Systems biology of the protease web-degradomics in the broadest sense-promises to reveal the functions of proteases in homeostasis and in disease states. This will indicate which proteases participate in defined pathologies and will help targeting specific proteases for disease treatments.


Journal of Biological Chemistry | 2013

Identifying Natural Substrates for Dipeptidyl Peptidases 8 and 9 Using Terminal Amine Isotopic Labeling of Substrates (TAILS) Reveals in Vivo Roles in Cellular Homeostasis and Energy Metabolism

Claire H. Wilson; Dono Indarto; Alain Doucet; Lisa D. Pogson; Melissa R. Pitman; Kym McNicholas; R. Ian Menz; Christopher M. Overall; Catherine A. Abbott

Background: Biological roles for intracellular dipeptidyl peptidases 8 and 9 are unknown. Results: By degradomics, 29 new in vivo substrates were identified (nine validated) for DP8/DP9, including adenylate kinase 2 and calreticulin. Conclusion: These substrates indicate roles for DP8 and DP9 in metabolism and energy homeostasis. Significance: Being the first proteomics screen for DP8/DP9 substrates, unexpected new cellular roles were revealed. Dipeptidyl peptidases (DP) 8 and 9 are homologous, cytoplasmic N-terminal post-proline-cleaving enzymes that are anti-targets for the development of DP4 (DPPIV/CD26) inhibitors for treating type II diabetes. To date, DP8 and DP9 have been implicated in immune responses and cancer biology, but their pathophysiological functions and substrate repertoire remain unknown. This study utilizes terminal amine isotopic labeling of substrates (TAILS), an N-terminal positional proteomic approach, for the discovery of in vivo DP8 and DP9 substrates. In vivo roles for DP8 and DP9 in cellular metabolism and homeostasis were revealed via the identification of more than 29 candidate natural substrates and pathways affected by DP8/DP9 overexpression. Cleavage of 14 substrates was investigated in vitro; 9/14 substrates for both DP8 and DP9 were confirmed by MALDI-TOF MS, including two of high confidence, calreticulin and adenylate kinase 2. Adenylate kinase 2 plays key roles in cellular energy and nucleotide homeostasis. These results demonstrate remarkable in vivo substrate overlap between DP8/DP9, suggesting compensatory roles for these enzymes. This work provides the first global investigation into DP8 and DP9 substrates, providing a number of leads for future investigations into the biological roles and significance of DP8 and DP9 in human health and disease.


Molecular & Cellular Proteomics | 2011

Broad Coverage Identification of Multiple Proteolytic Cleavage Site Sequences in Complex High Molecular Weight Proteins Using Quantitative Proteomics as a Complement to Edman Sequencing

Alain Doucet; Christopher M. Overall

Proteolytic processing modifies the pleiotropic functions of many large, complex, and modular proteins and can generate cleavage products with new biological activity. The identification of exact proteolytic cleavage sites in the extracellular matrix laminins, fibronectin, and other extracellular matrix proteins is not only important for understanding protein turnover but is needed for the identification of new bioactive cleavage products. Several such products have recently been recognized that are suggested to play important cellular regulatory roles in processes, including angiogenesis. However, identifying multiple cleavage sites in extracellular matrix proteins and other large proteins is challenging as N-terminal Edman sequencing of multiple and often closely spaced cleavage fragments on SDS-PAGE gels is difficult, thus limiting throughput and coverage. We developed a new liquid chromatography-mass spectrometry approach we call amino-terminal oriented mass spectrometry of substrates (ATOMS) for the N-terminal identification of protein cleavage fragments in solution. ATOMS utilizes efficient and low cost dimethylation isotopic labeling of original N-terminal and proteolytically generated N termini of protein cleavage fragments followed by quantitative tandem mass spectrometry analysis. Being a peptide-centric approach, ATOMS is not dependent on the SDS-PAGE resolution limits for protein fragments of similar mass. We demonstrate that ATOMS reliably identifies multiple proteolytic sites per reaction in complex proteins. Fifty-five neutrophil elastase cleavage sites were identified in laminin-1 and fibronectin-1 with 34 more identified by matrix metalloproteinase cleavage. Hence, our degradomics approach offers a complimentary alternative to Edman sequencing with broad applicability in identifying N termini such as cleavage sites in complex high molecular weight extracellular matrix proteins after in vitro cleavage assays. ATOMS can therefore be useful in identifying new cleavage products of extracellular matrix proteins cleaved by proteases in pathology for bioactivity screening.


Methods of Molecular Biology | 2011

Identification of Proteolytic Products and Natural Protein N-Termini by Terminal Amine Isotopic Labeling of Substrates (TAILS)

Alain Doucet; Oded Kleifeld; Jayachandran N. Kizhakkedathu; Christopher M. Overall

Determining the sequence of protein N-termini and their modifications functionally annotates proteins since translation isoforms, posttranslational modifications, and proteolytic truncations direct localization, activity, and the half-life of most proteins. Here we present in detail the steps required to perform our recently described approach we call Terminal Amine Isotopic Labeling of Substrates (TAILS), a combined N-terminomics and protease substrate discovery degradomics platform for the simultaneous quantitative and global analysis of the N-terminome and proteolysis in one MS/MS experiment. By a 3-day procedure with flexible α- and ɛ-amine labeling and blocking options, TAILS removes internal tryptic and C-terminal peptides by binding to a dendritic polyglycerol aldehyde polymer. Therefore, by negative selection, this enriches for both the N-terminal-labeled peptides and all forms of naturally blocked N-terminal peptides. In addition to providing valuable proteome annotation, the simultaneous analysis of the original mature N-terminal peptides enables these peptides to be used for higher confidence protein substrate identification by two or more different and unique peptides. Second, the analysis of the N-terminal peptides forms a statistical classifier to determine valid isotope ratio cutoffs in order to identify with high-confidence protease-generated neo-N-terminal peptides. Third, quantifying the loss of acetylated or cyclized N-terminal peptides that have been cleaved extends overall substrate coverage. Hence, TAILS allows for the global analysis of the N-terminome and determination of cleavage site motifs and substrates for protease including those with unknown or broad specificity.


Analytical Chemistry | 2011

Development of soluble ester-linked aldehyde polymers for proteomics.

Patrick Beaudette; Nicholas A. A. Rossi; Pitter F. Huesgen; Xifei Yu; Rajesh A. Shenoi; Alain Doucet; Christopher M. Overall; Jayachandran N. Kizhakkedathu

High molecular weight hyperbranched polyglycerol (HPG) was selected for development as a soluble polymer support for the targeted selection and release of primary-amine containing peptides from a complex mixture. HPG has been functionalized with ester-linked aldehyde groups that can bind primary-amine containing peptides via a reductive alkylation reaction. Once bound, the high molecular weight of the polymer facilitates separation from a complex peptide mixture by employing either a 30 kDa molecular weight cutoff membrane or precipitation in acetonitrile. Following the removal of unbound peptides and reagents, subsequent hydrolysis of the ester linker releases the bound peptide into solution for analysis by mass spectrometry. Released peptides retain the linker moiety and are therefore characteristically mass-shifted. Four water-soluble cleavable aldehyde polymers (CAP1, CAP2, CAP3, and CAP4) ranging in types of linker groups, length of the linker groups, have been prepared and characterized, each demonstrating the ability to selectively enrich and sequence primary-amine peptides from a complex human proteome containing blocked (dimethylated amine) and unblocked (primary amine) peptides. The polymers have very low nonspecific peptide-binding properties while possessing significantly more reactive groups per milligram of the support than commercially available resins. The polymers exhibit a range of reactivities and binding capacities that depend on the type of linker group between the aldehyde group and the polymer. Using various linker structures, we also probed the mechanism of the observed dehydration of hydrolyzed peptides during matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis.


Methods in Enzymology | 2011

Amino-Terminal Oriented Mass Spectrometry of Substrates (ATOMS) N-terminal sequencing of proteins and proteolytic cleavage sites by quantitative mass spectrometry.

Alain Doucet; Christopher M. Overall

Edman degradation is a long-established technique for N-terminal sequencing of proteins and cleavage fragments. However, for accurate data analysis and amino acid assignments, Edman sequencing proceeds on samples of single proteins only and so lacks high-throughput capabilities. We describe a new method for the high-throughput determination of N-terminal sequences of multiple protein fragments in solution. Proteolytic processing can change the activity of bioactive proteins and also reveal cryptic binding sites and generate proteins with new functions (neoproteins) not found in the parent molecule. For example, extracellular matrix (ECM) protein processing often produces multiple proteolytic fragments with the generation of cryptic binding sites and neoproteins by ECM protein processing being well documented. The exact proteolytic cleavage sites need to be identified to fully understand the functions of the cleavage fragments and biological roles of proteases in vivo. However, the identification of cleavage sites in complex high molecular proteins such as those composing the ECM is not trivial. N-terminal microsequencing of proteolytic fragments is the usual method employed, but it suffers from poor resolution of sodium dodecylsulfate-polyacrylamide gel electrophoresis gels and is inefficient at identifying multiple cleavages, requiring preparation of numerous gels or membrane slices for analysis. We recently developed Amino-Terminal Oriented Mass spectrometry of Substrates (ATOMS) to overcome these limitations as a complement for N-terminal sequencing. ATOMS employs isotopic labeling and quantitative tandem mass spectrometry to identify cleavage sites in a fast and accurate manner. We successfully used ATOMS to identify nearly 100 cleavage sites in the ECM proteins laminin and fibronectin. Presented herein is the detailed step-by-step protocol for ATOMS.

Collaboration


Dive into the Alain Doucet's collaboration.

Top Co-Authors

Avatar

Christopher M. Overall

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Prudova

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Oded Kleifeld

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Amanda E. Starr

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Caroline L. Bellac

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

David Rodríguez

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Jennifer H. Cox

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Richard A. Dean

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge