Richard Baldauf
United States Environmental Protection Agency
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Richard Baldauf.
Journal of The Air & Waste Management Association | 2008
Richard Baldauf; Eben D. Thoma; Michael D. Hays; Richard C. Shores; John S. Kinsey; Brian K. Gullett; Sue Kimbrough; Vlad Isakov; Thomas Joel Long; Richard Snow; Andrey Khlystov; Jason Weinstein; Fu-Lin Chen; Robert L. Seila; David A. Olson; Ian Gilmour; Seung Hyun Cho; Nealson Watkins; Patricia Rowley; John J. Bang
Abstract A growing number of epidemiological studies conducted worldwide suggest an increase in the occurrence of adverse health effects in populations living, working, or going to school near major roadways. A study was designed to assess traffic emissions impacts on air quality and particle toxicity near a heavily traveled highway. In an attempt to describe the complex mixture of pollutants and atmospheric transport mechanisms affecting pollutant dispersion in this near-highway environment, several real-time and time-integrated sampling devices measured air quality concentrations at multiple distances and heights from the road. Pollutants analyzed included U.S. Environmental Protection Agency (EPA)-regulated gases, particulate matter (coarse, fine, and ultrafine), and air toxics. Pollutant measurements were synchronized with real-time traffic and meteorological monitoring devices to provide continuous and integrated assessments of the variation of near-road air pollutant concentrations and particle toxicity with changing traffic and environmental conditions, as well as distance from the road. Measurement results demonstrated the temporal and spatial impact of traffic emissions on near-road air quality. The distribution of mobile source emitted gas and particulate pollutants under all wind and traffic conditions indicated a higher proportion of elevated concentrations near the road, suggesting elevated exposures for populations spending significant amounts of time in this microenvironment. Diurnal variations in pollutant concentrations also demonstrated the impact of traffic activity and meteorology on near-road air quality. Time-resolved measurements of multiple pollutants demonstrated that traffic emissions produced a complex mixture of criteria and air toxic pollutants in this microenvironment. These results provide a foundation for future assessments of these data to identify the relationship of traffic activity and meteorology on air quality concentrations and population exposures.
Science of The Total Environment | 2012
Gayle S. W. Hagler; Ming Yeng Lin; Andrey Khlystov; Richard Baldauf; Vlad Isakov; James Faircloth; Laura E. Jackson
Roadside barriers, such as tree stands or noise barriers, are prevalent in many populated areas and have been shown to affect the dispersion of traffic emissions. If roadside noise barriers or tree stands are found to consistently lower ground-level air pollution concentrations in the near-road environment, this may be a practical strategy for reducing exposures to air contaminants along populated traffic corridors. This study measured ultrafine particle (UFP) concentrations using an instrumented mobile measurement approach, collecting data on major roadways and in near-road locations for more than forty sampling sessions at three locations in central North Carolina, USA. Two of the sampling sites had relatively thin tree stands, one evergreen and one deciduous, along a portion of the roadway. The third sampling site had a brick noise wall along a portion of the road. At 10 m from the road, UFPs measured using a mobile sampling platform were lower by approximately 50% behind the brick noise wall relative to a nearby location without a barrier for multiple meteorological conditions. The UFP trends at the vegetative barrier sites were variable and the barrier effect is uncertain. In some cases, higher concentrations were observed behind the vegetative barrier, with respect to the clearing, which may be due to gaps in the thin tree stands allowing the transport of traffic-related air pollution to near-road areas behind the vegetation. On-road sampling revealed no consistent difference in UFP levels in on-road portions of the road with or without a roadside barrier present. These findings support the notion that solid roadside barriers may mitigate near-road impact. Given the co-benefits of vegetative barriers in the urban landscape, research regarding the mitigation potential of vegetative barriers of other configurations (e.g., greater density, wider buffer) is encouraged.
Environmental Health Perspectives | 2009
Seung-Hyun Cho; Haiyan Tong; John K. McGee; Richard Baldauf; Q Krantz; Matthew Ian Gilmour
Background Epidemiologic studies have reported an association between proximity to highway traffic and increased cardiopulmonary illnesses. Objectives We investigated the effect of size-fractionated particulate matter (PM), obtained at different distances from a highway, on acute cardiopulmonary toxicity in mice. Methods We collected PM for 2 weeks in July–August 2006 using a three-stage (ultrafine, < 0.1 μm; fine, 0.1–2.5 μm; coarse, 2.5–10 μm) high-volume impactor at distances of 20 m [near road (NR)] and 275 m [far road (FR)] from an interstate highway in Raleigh, North Carolina. Samples were extracted in methanol, dried, diluted in saline, and then analyzed for chemical constituents. Female CD-1 mice received either 25 or 100 μg of each size fraction via oropharyngeal aspiration. At 4 and 18 hr postexposure, mice were assessed for pulmonary responsiveness to inhaled methacholine, biomarkers of lung injury and inflammation; ex vivo cardiac pathophysiology was assessed at 18 hr only. Results Overall chemical composition between NR and FR PM was similar, although NR samples comprised larger amounts of PM, endotoxin, and certain metals than did the FR samples. Each PM size fraction showed differences in ratios of major chemical classes. Both NR and FR coarse PM produced significant pulmonary inflammation irrespective of distance, whereas both NR and FR ultrafine PM induced cardiac ischemia–reperfusion injury. Conclusions On a comparative mass basis, the coarse and ultrafine PM affected the lung and heart, respectively. We observed no significant differences in the overall toxicity end points and chemical makeup between the NR and FR PM. The results suggest that PM of different size-specific chemistry might be associated with different toxicologic mechanisms in cardiac and pulmonary tissues.
Journal of The Air & Waste Management Association | 2010
Gayle S. W. Hagler; Eben D. Thoma; Richard Baldauf
Abstract Assessment of near-road air quality is challenging in urban environments that have roadside structures, elevated road sections, or depressed roads that may impact the dispersion of traffic emissions. Vehicles traveling on arterial roadways may also contribute to air pollution spatial variability in urban areas. To characterize the nature of near-road air quality in a complex urban environment, an instrumented all-electric vehicle was deployed to perform high spatial- and temporal-resolution mapping of ultra-fine particles (UFPs, particle diameter <100 nm) and carbon monoxide (CO). Sampling was conducted in areas surrounding a highway in Durham, NC, with multiple repeats of the driving route accomplished within a morning or evening commute time frame. Six different near-road transects were driven, which included features such as noise barriers, vegetation, frontage roads, and densely built houses. Under downwind conditions, median UFP and CO levels in near-road areas located 20–150 m from the highway were a factor of 1.8 and 1.2 higher, respectively, than in areas characterized as urban background. Sampling in multiple near-road neighborhoods during downwind conditions revealed significant variability in absolute UFP and CO concentrations as well as in the rate of concentration attenuation with increasing distance from the highway. During low-speed meandering winds, regional UFP and CO concentrations nearly doubled relative to crosswind conditions; however, near-road UFP levels were still higher than urban background levels by a factor of 1.2, whereas near-road CO concentrations were not significantly different than the urban background.
Science of The Total Environment | 2016
Zheming Tong; Richard Baldauf; Vlad Isakov; Parikshit Deshmukh; K. Max Zhang
With increasing evidence that exposures to air pollution near large roadways increases risks of a number of adverse human health effects, identifying methods to reduce these exposures has become a public health priority. Roadside vegetation barriers have shown the potential to reduce near-road air pollution concentrations; however, the characteristics of these barriers needed to ensure pollution reductions are not well understood. Designing vegetation barriers to mitigate near-road air pollution requires a mechanistic understanding of how barrier configurations affect the transport of traffic-related air pollutants. We first evaluated the performance of the Comprehensive Turbulent Aerosol Dynamics and Gas Chemistry (CTAG) model with Large Eddy Simulation (LES) to capture the effects of vegetation barriers on near-road air quality, compared against field data. Next, CTAG with LES was employed to explore the effects of six conceptual roadside vegetation/solid barrier configurations on near-road size-resolved particle concentrations, governed by dispersion and deposition. Two potentially viable design options are revealed: a) a wide vegetation barrier with high Leaf Area Density (LAD), and b) vegetation-solid barrier combinations, i.e., planting trees next to a solid barrier. Both designs reduce downwind particle concentrations significantly. The findings presented in the study will assist urban planning and forestry organizations with evaluating different green infrastructure design options.
Science of The Total Environment | 2014
Halley L. Brantley; Gayle S. W. Hagler; Parikshit Deshmukh; Richard Baldauf
One proposed method for reducing exposure to mobile source air pollution is the construction or preservation of vegetation barriers between major roads and nearby populations. This study combined stationary and mobile monitoring approaches to determine the effects of an existing, mixed-species tree stand on near-road black carbon (BC) and particulate matter concentrations. Results indicated that wind direction and time of day significantly affected pollutant concentrations behind the tree stand. Continuous sampling revealed reductions in BC behind the barrier, relative to a clearing, during downwind (12.4% lower) and parallel (7.8% lower) wind conditions, with maximum reductions of 22% during the late afternoon when winds were from the road. Particle counts in the fine and coarse particle size range (0.5-10 μm aerodynamic diameter) did not show change. Mobile sampling revealed BC concentration attenuation, a result of the natural dilution and mixing that occur with transport from the road, was more gradual behind the vegetation barrier than in unobstructed areas. These findings suggest that a mature tree stand can modestly improve traffic-related air pollution in areas located adjacent to the road; however, the configuration of the tree stand can influence the likelihood and extent of pollutant reductions.
Journal of The Air & Waste Management Association | 2008
Eben D. Thoma; Richard C. Shores; Vlad Isakov; Richard Baldauf
Abstract Understanding motor vehicle emissions, near-roadway pollutant dispersion, and their potential impact to near-roadway populations is an area of growing environmental interest. As part of ongoing U.S. Environmental Protection Agency research in this area, a field study was conducted near Interstate 440 (I-440) in Raleigh, NC, in July and August of 2006. This paper presents a subset of measurements from the study focusing on nitric oxide (NO) concentrations near the roadway. Measurements of NO in this study were facilitated by the use of a novel path-integrated optical remote sensing technique called deep ultraviolet differential optical absorption spectroscopy (DUV-DOAS). This paper reviews the development and application of this measurement system. Time-resolved near-road NO concentrations are analyzed in conjunction with wind and traffic data to provide a picture of emissions and near-road dispersion for the study. Results show peak NO concentrations in the 150 ppb range during weekday morning rush hours with winds from the road accompanied by significantly lower afternoon and weekend concentrations. Traffic volume and wind direction are shown to be primary determinants of NO concentrations with turbulent diffusion and meandering accounting for significant near-road concentrations in off-wind conditions. The enhanced source capture performance of the open-path configuration allowed for robust comparisons of measured concentrations with a composite variable of traffic intensity coupled with wind transport (R2 = 0.84) as well as investigations on the influence of wind direction on NO dilution near the roadway. The benefits of path-integrated measurements for assessing line source impacts and evaluating models is presented. The advantages of NO as a tracer compound, compared with nitrogen dioxide, for investigations of mobile source emissions and initial dispersion under crosswind conditions are also discussed.
Environmental Science & Technology | 2012
Darrell B. Sonntag; Chad R. Bailey; Carl R. Fulper; Richard Baldauf
The contribution of lubricating oil to particulate matter (PM) emissions representative of the in-use 2004 light-duty gasoline vehicles fleet is estimated from the Kansas City Light-Duty Vehicle Emissions Study (KCVES). PM emissions are apportioned to lubricating oil and gasoline using aerosol-phase chemical markers measured in PM samples obtained from 99 vehicles tested on the California Unified Driving Cycle. The oil contribution to fleet-weighted PM emission rates is estimated to be 25% of PM emission rates. Oil contributes primarily to the organic fraction of PM, with no detectable contribution to elemental carbon emissions. Vehicles are analyzed according to pre-1991 and 1991-2004 groups due to differences in properties of the fitting species between newer and older vehicles, and to account for the sampling design of the study. Pre-1991 vehicles contribute 13.5% of the KC vehicle population, 70% of oil-derived PM for the entire fleet, and 33% of the fuel-derived PM. The uncertainty of the contributions is calculated from a survey analysis resampling method, with 95% confidence intervals for the oil-derived PM fraction ranging from 13% to 37%. The PM is not completely apportioned to the gasoline and oil due to several contributing factors, including varied chemical composition of PM among vehicles, metal emissions, and PM measurement artifacts. Additional uncertainties include potential sorption of polycyclic aromatic hydrocarbons into the oil, contributions of semivolatile organic compounds from the oil to the PM measurements, and representing the in-use fleet with a limited number of vehicles.
Environmental Science & Technology | 2010
Edward Nam; Sandeep Kishan; Richard Baldauf; Carl R. Fulper; Michael Sabisch; James Warila
The Kansas City Light-Duty Vehicle Emissions Study (KCVES) measured exhaust emissions of regulated and unregulated pollutants from 496 vehicles recruited in the Kansas City metropolitan area in 2004 and 2005. Vehicle emissions testing occurred during the summer and winter, with the vehicles operated at ambient temperatures. One key component of this study was the investigation of the influence of ambient temperature on particulate matter (PM) emissions from gasoline-powered vehicles. A subset of the recruited vehicles were tested in both the summer and winter to further elucidate the effects of temperature on vehicle tailpipe emissions. The study results indicated that PM emissions increased exponentially as temperature decreased. In general, PM emissions doubled for every 20 degrees F drop in ambient temperature, with these increases independent of vehicle model year. The effects of temperature on vehicle emissions was most pronounced during the initial start-up of the vehicle (cold start phase) when the vehicle was still cold, leading to inefficient combustion, inefficient catalyst operation, and the potential for the vehicle to be operating under fuel-rich conditions. The large data set available from this study also allowed for the development of a model to describe temperature effects on PM emission rates due to changing ambient conditions. This study has been used as the foundation to develop PM emissions rates, and to model the impact of ambient temperature on these rates, for gasoline-powered vehicles in the EPAs new regulatory motor vehicle emissions model, MOVES.
International Journal of Environmental Research and Public Health | 2016
Richard Baldauf; Robert B. Devlin; Peter Gehr; Robert Giannelli; Beth Hassett-Sipple; Heejung Jung; Giorgio Martini; Joseph McDonald; Jason D. Sacks; Katherine Walker
In February 2015, the United States Environmental Protection Agency (EPA) sponsored a workshop in Research Triangle Park, NC, USA to review the current state of the science one missions, air quality impacts, and health effects associated with exposures to ultrafine particles[1].[...].