Richard Baran
Lawrence Berkeley National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Richard Baran.
Journal of Biological Chemistry | 2006
Tomoyoshi Soga; Richard Baran; Makoto Suematsu; Yuki Ueno; Satsuki Ikeda; Tadayuki Sakurakawa; Yuji Kakazu; Takamasa Ishikawa; Martin Robert; Takaaki Nishioka; Masaru Tomita
Metabolomics is an emerging tool that can be used to gain insights into cellular and physiological responses. Here we present a metabolome differential display method based on capillary electrophoresis time-of-flight mass spectrometry to profile liver metabolites following acetaminophen-induced hepatotoxicity. We globally detected 1,859 peaks in mouse liver extracts and highlighted multiple changes in metabolite levels, including an activation of the ophthalmate biosynthesis pathway. We confirmed that ophthalmate was synthesized from 2-aminobutyrate through consecutive reactions with γ-glutamylcysteine and glutathione synthetase. Changes in ophthalmate level in mouse serum and liver extracts were closely correlated and ophthalmate levels increased significantly in conjunction with glutathione consumption. Overall, our results provide a broad picture of hepatic metabolite changes following acetaminophen treatment. In addition, we specifically found that serum ophthalmate is a sensitive indicator of hepatic GSH depletion, and may be a new biomarker for oxidative stress. Our method can thus pinpoint specific metabolite changes and provide insights into the perturbation of metabolic pathways on a large scale and serve as a powerful new tool for discovering low molecular weight biomarkers.
Analytical Chemistry | 2010
Richard Baran; Benjamin P. Bowen; Nicholas J. Bouskill; Eoin L. Brodie; Steven M. Yannone; Trent R. Northen
Metabolite profiling using mass spectrometry provides an attractive approach for the interrogation of cellular metabolic capabilities. Untargeted metabolite profiling has the potential to identify numerous novel metabolites; however, de novo identification of metabolites from spectral features remains a challenge. Here we present an integrated workflow for metabolite identification using uniform stable isotope labeling. Metabolite profiling of cell and growth media extracts of unlabeled control, (15)N, and (13)C-labeled cultures of the cyanobacterium, Synechococcus sp. PCC 7002 was performed using normal phase liquid chromatography coupled to mass spectrometry (LC-MS). Visualization of three-way comparisons of raw data sets highlighted characteristic labeling patterns for metabolites of biological origin allowing exhaustive identification of corresponding spectral features. Additionally, unambiguous assignment of chemical formulas was greatly facilitated by the use of stable isotope labeling. Chemical formulas of metabolites responsible for redundant spectral features were determined and fragmentation (MS/MS) spectra for these metabolites were collected. Analysis of acquired MS/MS spectra against spectral database records led to the identification of a number of metabolites absent not only from the reconstructed draft metabolic network of Synechococcus sp. PCC 7002 but not included in databases of metabolism (MetaCyc or KEGG).
Current Opinion in Microbiology | 2009
Richard Baran; Wolfgang Reindl; Trent R. Northen
The exponential growth in the number of sequenced microorganisms versus the relative slow influx of direct biochemical characterization of microbes is limiting the utility of sequence information. High-throughput experimental approaches to functionally characterize microbial metabolism are urgently needed to leverage genome sequences for example: to understand host-microbe interactions, microbial communities, to utilize microbes for bioenergy, bioremediation, etc. Mass spectrometry based small molecule metabolite analysis is rapidly becoming a method of choice to meet these needs and enables multiple paths to discovering and validating the functional assignments. Approaches range from the targeted in vitro screening of small sets of metabolic transformations to define enzymatic activities to global metabolic profiling (metabolomics) to define metabolic pathways and gain insights into microbial responses to environmental and genetic perturbations. The combination of metabolite profiling with genome-scale models of metabolism and other -omic approaches provides opportunities to expand our understanding of microbial metabolic networks, stress responses, and to identify genes associated with specific enzymatic and regulatory activities.
Nature Communications | 2015
Richard Baran; Eoin L. Brodie; Jazmine Mayberry-Lewis; Eric Hummel; Ulisses Nunes da Rocha; Romy Chakraborty; Benjamin P. Bowen; Ulas Karaoz; Hinsby Cadillo-Quiroz; Ferran Garcia-Pichel; Trent R. Northen
Soils are arguably the most microbially diverse ecosystems. Physicochemical properties have been associated with the maintenance of this diversity. Yet, the role of microbial substrate specialization is largely unexplored since substrate utilization studies have focused on simple substrates, not the complex mixtures representative of the soil environment. Here we examine the exometabolite composition of desert biological soil crusts (biocrusts) and the substrate preferences of seven biocrust isolates. The biocrusts main primary producer releases a diverse array of metabolites, and isolates of physically associated taxa use unique subsets of the complex metabolite pool. Individual isolates use only 13−26% of available metabolites, with only 2 out of 470 used by all and 40% not used by any. An extension of this approach to a mesophilic soil environment also reveals high levels of microbial substrate specialization. These results suggest that exometabolite niche partitioning may be an important factor in the maintenance of microbial diversity.
Metabolomics | 2010
Masahiro Sugimoto; Akiyoshi Hirayama; Takamasa Ishikawa; Martin Robert; Richard Baran; Keizo Uehara; Katsuya Kawai; Tomoyoshi Soga; Masaru Tomita
In metabolomics, the rapid identification of quantitative differences between multiple biological samples remains a major challenge. While capillary electrophoresis–mass spectrometry (CE–MS) is a powerful tool to simultaneously quantify charged metabolites, reliable and easy-to-use software that is well suited to analyze CE–MS metabolic profiles is still lacking. Optimized software tools for CE–MS are needed because of the sometimes large variation in migration time between runs and the wider variety of peak shapes in CE–MS data compared with LC–MS or GC–MS. Therefore, we implemented a stand-alone application named JDAMP (Java application for Differential Analysis of Metabolite Profiles), which allows users to identify the metabolites that vary between two groups. The main features include fast calculation modules and a file converter using an original compact file format, baseline subtraction, dataset normalization and alignment, visualization on 2D plots (m/z and time axis) with matching metabolite standards, and the detection of significant differences between metabolite profiles. Moreover, it features an easy-to-use graphical user interface that requires only a few mouse-actions to complete the analysis. The interface also enables the analyst to evaluate the semiautomatic processes and interactively tune options and parameters depending on the input datasets. The confirmation of findings is available as a list of overlaid electropherograms, which is ranked using a novel difference-evaluation function that accounts for peak size and distortion as well as statistical criteria for accurate difference-detection. Overall, the JDAMP software complements other metabolomics data processing tools and permits easy and rapid detection of significant differences between multiple complex CE–MS profiles.
Mbio | 2013
Annika C. Mosier; Nicholas B. Justice; Benjamin P. Bowen; Richard Baran; Brian C. Thomas; Trent R. Northen; Jillian F. Banfield
ABSTRACT Microorganisms grow under a remarkable range of extreme conditions. Environmental transcriptomic and proteomic studies have highlighted metabolic pathways active in extremophilic communities. However, metabolites directly linked to their physiology are less well defined because metabolomics methods lag behind other omics technologies due to a wide range of experimental complexities often associated with the environmental matrix. We identified key metabolites associated with acidophilic and metal-tolerant microorganisms using stable isotope labeling coupled with untargeted, high-resolution mass spectrometry. We observed >3,500 metabolic features in biofilms growing in pH ~0.9 acid mine drainage solutions containing millimolar concentrations of iron, sulfate, zinc, copper, and arsenic. Stable isotope labeling improved chemical formula prediction by >50% for larger metabolites (>250 atomic mass units), many of which were unrepresented in metabolic databases and may represent novel compounds. Taurine and hydroxyectoine were identified and likely provide protection from osmotic stress in the biofilms. Community genomic, transcriptomic, and proteomic data implicate fungi in taurine metabolism. Leptospirillum group II bacteria decrease production of ectoine and hydroxyectoine as biofilms mature, suggesting that biofilm structure provides some resistance to high metal and proton concentrations. The combination of taurine, ectoine, and hydroxyectoine may also constitute a sulfur, nitrogen, and carbon currency in the communities. IMPORTANCE Microbial communities are central to many critical global processes and yet remain enigmatic largely due to their complex and distributed metabolic interactions. Metabolomics has the possibility of providing mechanistic insights into the function and ecology of microbial communities. However, our limited knowledge of microbial metabolites, the difficulty of identifying metabolites from complex samples, and the inability to link metabolites directly to community members have proven to be major limitations in developing advances in systems interactions. Here, we show that combining stable-isotope-enabled metabolomics with genomics, transcriptomics, and proteomics can illuminate the ecology of microorganisms at the community scale. Microbial communities are central to many critical global processes and yet remain enigmatic largely due to their complex and distributed metabolic interactions. Metabolomics has the possibility of providing mechanistic insights into the function and ecology of microbial communities. However, our limited knowledge of microbial metabolites, the difficulty of identifying metabolites from complex samples, and the inability to link metabolites directly to community members have proven to be major limitations in developing advances in systems interactions. Here, we show that combining stable-isotope-enabled metabolomics with genomics, transcriptomics, and proteomics can illuminate the ecology of microorganisms at the community scale.
ACS Chemical Biology | 2013
Richard Baran; Benjamin P. Bowen; Morgan N. Price; Adam P. Arkin; Adam M. Deutschbauer; Trent R. Northen
The discrepancy between the pace of sequencing and functional characterization of genomes is a major challenge in understanding complex microbial metabolic processes and metabolic interactions in the environment. Here, we identified and validated genes related to the utilization of specific metabolites in bacteria by profiling metabolite utilization in libraries of mutant strains. Untargeted mass spectrometry based metabolomics was used to identify metabolites utilized by Escherichia coli and Shewanella oneidensis MR-1. Targeted high-throughput metabolite profiling of spent media of 8042 individual mutant strains was performed to link utilization to specific genes. Using this approach we identified genes of known function as well as novel transport proteins and enzymes required for the utilization of tested metabolites. Specific examples include two subunits of a predicted ABC transporter encoded by the genes SO1043 and SO1044 required for the utilization of citrulline and a predicted histidase encoded by the gene SO3057 required for the utilization of ergothioneine by S. oneidensis. In vitro assays with purified proteins showed substrate specificity of SO3057 toward ergothioneine and histidine betaine in contrast to substrate specificity of a paralogous histidase SO0098 toward histidine. This generally applicable, high-throughput workflow has the potential both to discover novel metabolic capabilities of microorganisms and to identify the corresponding genes.
Marine Drugs | 2013
Richard Baran; Natalia Ivanova; Nick Jose; Ferran Garcia-Pichel; Nikos C. Kyrpides; Muriel Gugger; Trent R. Northen
Mass spectrometry-based metabolomics has become a powerful tool for the detection of metabolites in complex biological systems and for the identification of novel metabolites. We previously identified a number of unexpected metabolites in the cyanobacterium Synechococcus sp. PCC 7002, such as histidine betaine, its derivatives and several unusual oligosaccharides. To test for the presence of these compounds and to assess the diversity of small polar metabolites in other cyanobacteria, we profiled cell extracts of nine strains representing much of the morphological and evolutionary diversification of this phylum. Spectral features in raw metabolite profiles obtained by normal phase liquid chromatography coupled to mass spectrometry (MS) were manually curated so that chemical formulae of metabolites could be assigned. For putative identification, retention times and MS/MS spectra were cross-referenced with those of standards or available sprectral library records. Overall, we detected 264 distinct metabolites. These included indeed different betaines, oligosaccharides as well as additional unidentified metabolites with chemical formulae not present in databases of metabolism. Some of these metabolites were detected only in a single strain, but some were present in more than one. Genomic interrogation of the strains revealed that generally, presence of a given metabolite corresponded well with the presence of its biosynthetic genes, if known. Our results show the potential of combining metabolite profiling and genomics for the identification of novel biosynthetic genes.
Nature plants | 2015
Chew Yee Ngan; Chee-Hong Wong; Cindy Choi; Yuko Yoshinaga; Katherine Louie; Jing Jia; Cindy Chen; Benjamin P. Bowen; Haoyu Cheng; Lauriebeth Leonelli; Rita Kuo; Richard Baran; José G. García-Cerdán; Abhishek Pratap; Mei Wang; Joanne Lim; Hope Tice; Chris Daum; Jian Xu; Trent R. Northen; Axel Visel; James Bristow; Krishna K. Niyogi; Chia-Lin Wei
Alga-derived lipids represent an attractive potential source of biofuels. However, lipid accumulation in algae is a stress response tightly coupled to growth arrest, thereby imposing a major limitation on productivity. To identify transcriptional regulators of lipid accumulation, we performed an integrative chromatin signature and transcriptomic analysis to decipher the regulation of lipid biosynthesis in the alga Chlamydomonas reinhardtii. Genome-wide histone modification profiling revealed remarkable differences in functional chromatin states between the algae and higher eukaryotes and uncovered regulatory components at the core of lipid accumulation pathways. We identified the transcription factor, PSR1, as a pivotal switch that triggers cytosolic lipid accumulation. Dissection of the PSR1-induced lipid profiles corroborates its role in coordinating multiple lipid-inducing stress responses. The comprehensive maps of functional chromatin signatures in a major clade of eukaryotic life and the discovery of a transcriptional regulator of algal lipid metabolism will facilitate targeted engineering strategies to mediate high lipid production in microalgae.
Frontiers in Microbiology | 2016
Nicholas J. Bouskill; Tana E. Wood; Richard Baran; Zaw Ye; Benjamin P. Bowen; HsiaoChien Lim; Jizhong Zhou; Joy D. Van Nostrand; Peter S. Nico; Trent R. Northen; Whendee L. Silver; Eoin L. Brodie
Global climate models predict a future of increased severity of drought in many tropical forests. Soil microbes are central to the balance of these systems as sources or sinks of atmospheric carbon (C), yet how they respond metabolically to drought is not well-understood. We simulated drought in the typically aseasonal Luquillo Experimental Forest, Puerto Rico, by intercepting precipitation falling through the forest canopy. This approach reduced soil moisture by 13% and water potential by 0.14 MPa (from -0.2 to -0.34). Previous results from this experiment have demonstrated that the diversity and composition of these soil microbial communities are sensitive to even small changes in soil water. Here, we show prolonged drought significantly alters the functional potential of the community and provokes a clear osmotic stress response, including the production of compatible solutes that increase intracellular C demand. Subsequently, a microbial population emerges with a greater capacity for extracellular enzyme production targeting macromolecular carbon. Significantly, some of these drought-induced functional shifts in the soil microbiota are attenuated by prior exposure to a short-term drought suggesting that acclimation may occur despite a lack of longer-term drought history.