Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard C. Elphic is active.

Publication


Featured researches published by Richard C. Elphic.


Science | 2010

Detection of Water in the LCROSS Ejecta Plume

Anthony Colaprete; Peter H. Schultz; Jennifer Lynne Heldmann; Diane H. Wooden; Mark Shirley; Kimberly Ennico; Brendan Hermalyn; William Marshall; Antonio J. Ricco; Richard C. Elphic; David B. Goldstein; D. P. Summy; Gwendolyn Diane Bart; Erik Asphaug; Don Korycansky; David Landis; Luke Sollitt

Watering the Moon About a year ago, a spent upper stage of an Atlas rocket was deliberately crashed into a crater at the south pole of the Moon, ejecting a plume of debris, dust, and vapor. The goal of this event, the Lunar Crater Observation and Sensing Satellite (LCROSS) experiment, was to search for water and other volatiles in the soil of one of the coldest places on the Moon: the permanently shadowed region within the Cabeus crater. Using ultraviolet, visible, and near-infrared spectroscopy data from accompanying craft, Colaprete et al. (p. 463; see the news story by Kerr; see the cover) found evidence for the presence of water and other volatiles within the ejecta cloud. Schultz et al. (p. 468) monitored the different stages of the impact and the resulting plume. Gladstone et al. (p. 472), using an ultraviolet spectrograph onboard the Lunar Reconnaissance Orbiter (LRO), detected H2, CO, Ca, Hg, and Mg in the impact plume, and Hayne et al. (p. 477) measured the thermal signature of the impact and discovered that it had heated a 30 to 200 square-meter region from ∼40 kelvin to at least 950 kelvin. Paige et al. (p. 479) mapped cryogenic zones predictive of volatile entrapment, and Mitrofanov et al. (p. 483) used LRO instruments to confirm that surface temperatures in the south polar region persist even in sunlight. In all, about 155 kilograms of water vapor was emitted during the impact; meanwhile, the LRO continues to orbit the Moon, sending back a stream of data to help us understand the evolution of its complex surface structures. A controlled spacecraft impact into a crater in the lunar south pole plunged through the lunar soil, revealing water and other volatiles. Several remote observations have indicated that water ice may be presented in permanently shadowed craters of the Moon. The Lunar Crater Observation and Sensing Satellite (LCROSS) mission was designed to provide direct evidence (1). On 9 October 2009, a spent Centaur rocket struck the persistently shadowed region within the lunar south pole crater Cabeus, ejecting debris, dust, and vapor. This material was observed by a second “shepherding” spacecraft, which carried nine instruments, including cameras, spectrometers, and a radiometer. Near-infrared absorbance attributed to water vapor and ice and ultraviolet emissions attributable to hydroxyl radicals support the presence of water in the debris. The maximum total water vapor and water ice within the instrument field of view was 155 ± 12 kilograms. Given the estimated total excavated mass of regolith that reached sunlight, and hence was observable, the concentration of water ice in the regolith at the LCROSS impact site is estimated to be 5.6 ± 2.9% by mass. In addition to water, spectral bands of a number of other volatile compounds were observed, including light hydrocarbons, sulfur-bearing species, and carbon dioxide.


Journal of Plasma Physics | 1997

The Earth's plasma sheet as a laboratory for flow turbulence in high-β MHD

Joseph E. Borovsky; Richard C. Elphic; Herbert O. Funsten; M. F. Thomsen

The bulk flows and magnetic-field fluctuations of the plasma sheet are investigated using single-point measurements from the ISEE-2 Fast Plasma Experiment and fluxgate magnetometer. Ten several-hour-long intervals of continuous data (with 3 s and 12 s time resolution) are analysed. The plasma-sheet flow appears to be strongly ‘turbulent’ (i.e. the flow is dominated by fluctuations that are unpredictable, with rms velocities[Gt ]mean velocities and with field fluctuations≈mean fields). The flow velocities are typically sub-Alfvenic. The flow-velocity probability distribution P ( v ) is constructed, and is found to be well fitted by exponential functions. Autocorrelation functions [Ascr ](τ) are constructed, and the autocorrelation times τ corr for the flow velocities are found to be about 2 min. From the flow measurements, an estimate of the mixing length in the plasma sheet is produced, yielding L mix ≈2 Earth radii; correspondingly, the plasma-sheet material appears to be well mixed in density and temperature. An eddy viscosity for the plasma sheet is also estimated. Power spectra, which are constructed from the v ( t ) and B ( t ) time series, have portions that are power laws with spectral indices that are near the range of those expected for turbulence theories. The plasma sheet may provide a laboratory for the study of turbulence in parameter regimes different from that of solar-wind turbulence: the plasma sheet is a β[Gt ]1, hot-ion plasma, and the turbulence may be strongly driven rather than well developed. The turbulent nature of the flow and the disordered nature of the magnetic field have implications for the transport of plasma-sheet material, for the penetration of the solar-wind electric field into the plasma sheet, and for the calculation of particle orbits in the magnetotail.


Science | 2010

Diviner lunar radiometer observations of cold traps in the moon's south polar region

David A. Paige; Matthew A. Siegler; Jo Ann Zhang; Paul O. Hayne; Emily J. Foote; Kristen A. Bennett; Ashwin R. Vasavada; Benjamin Todd Greenhagen; John T. Schofield; Daniel J. McCleese; Marc C. Foote; Eric DeJong; Bruce G. Bills; Wayne Hartford; Bruce C. Murray; Carlton C. Allen; Kelly Jean Snook; Laurence A. Soderblom; Simon B. Calcutt; F. W. Taylor; Neil E. Bowles; Joshua L. Bandfield; Richard C. Elphic; Rebecca Rose Ghent; Timothy D. Glotch; Michael Bruce Wyatt; Paul G. Lucey

Watering the Moon About a year ago, a spent upper stage of an Atlas rocket was deliberately crashed into a crater at the south pole of the Moon, ejecting a plume of debris, dust, and vapor. The goal of this event, the Lunar Crater Observation and Sensing Satellite (LCROSS) experiment, was to search for water and other volatiles in the soil of one of the coldest places on the Moon: the permanently shadowed region within the Cabeus crater. Using ultraviolet, visible, and near-infrared spectroscopy data from accompanying craft, Colaprete et al. (p. 463; see the news story by Kerr; see the cover) found evidence for the presence of water and other volatiles within the ejecta cloud. Schultz et al. (p. 468) monitored the different stages of the impact and the resulting plume. Gladstone et al. (p. 472), using an ultraviolet spectrograph onboard the Lunar Reconnaissance Orbiter (LRO), detected H2, CO, Ca, Hg, and Mg in the impact plume, and Hayne et al. (p. 477) measured the thermal signature of the impact and discovered that it had heated a 30 to 200 square-meter region from ∼40 kelvin to at least 950 kelvin. Paige et al. (p. 479) mapped cryogenic zones predictive of volatile entrapment, and Mitrofanov et al. (p. 483) used LRO instruments to confirm that surface temperatures in the south polar region persist even in sunlight. In all, about 155 kilograms of water vapor was emitted during the impact; meanwhile, the LRO continues to orbit the Moon, sending back a stream of data to help us understand the evolution of its complex surface structures. A controlled spacecraft impact into a crater in the lunar south pole plunged through the lunar soil, revealing water and other volatiles. Diviner Lunar Radiometer Experiment surface-temperature maps reveal the existence of widespread surface and near-surface cryogenic regions that extend beyond the boundaries of persistent shadow. The Lunar Crater Observation and Sensing Satellite (LCROSS) struck one of the coldest of these regions, where subsurface temperatures are estimated to be 38 kelvin. Large areas of the lunar polar regions are currently cold enough to cold-trap water ice as well as a range of both more volatile and less volatile species. The diverse mixture of water and high-volatility compounds detected in the LCROSS ejecta plume is strong evidence for the impact delivery and cold-trapping of volatiles derived from primitive outer solar system bodies.


Journal of Geophysical Research | 1998

The transport of plasma sheet material from the distant tail to geosynchronous orbit

Joseph E. Borovsky; M. F. Thomsen; Richard C. Elphic; Thomas E. Cayton; D. J. McComas

Several aspects of mass transport in the Earths plasma sheet are examined. The evolution of plasma sheet material as it moves earthward is examined by statistically comparing plasma sheet properties at three different downtail distances: near-Earth plasma sheet properties obtained from measurements by 1989-046 near the geomagnetic equator near midnight at 6.6 RE, midtail plasma sheet properties obtained from ISEE 2 measurements during 333 encounters with the neutral sheet, and distant-plasma sheet properties obtained from ISEE 2 measurements during 53 encounters with the interface between the plasma sheet and the plasma sheet boundary layer. Examination of the evolution of the plasma sheet through pressure-density space shows that the transport is nearly adiabatic (γ = 1.52), with a loss of entropy observed in the near-Earth region. The estimated pressure loss from the plasma-sheet associated with the aurora is able to account for the observed decrease in entropy. The near-Earth plasma sheet plasma is also found to be compressed much less than would be expected from magnetic field models. Examination of the evolution of the plasma sheet through density-flux tube-volume space (with the aid of the T89c magnetic field model) indicates that there is a substantial loss of mass from plasma sheet flux tubes. Global magnetic reconnection during substorms and patchy reconnection at other times is invoked to account (1) for the required mass loss, (2) for the related lack of compression, and (3) for an observed disconnection between ionospheric convection and plasma sheet convection. This reconnection must occur closer than 20 RE downtail. Selective transport is examined by statistically analyzing the ISEE 2 neutral sheet crossing data set: strong transport is found to be associated with low densities, with weak Bz, and with large flux tube volume. A correlation between the direction of the flow in the plasma sheet and the solar wind velocity indicates that earth-ward transport is stronger when the solar wind velocity is lower. An examination of near-Earth and of midtail plasma sheet densities, temperatures, and entropies shows that the plasma sheet is usually spatially homogeneous, contrary to a “bubbles and blobs” picture of transport. Several new points of view about plasma sheet transport are discussed, including the dominant role of near-Earth reconnection, the importance of auroral zone pressure loss, the control of the plasma sheet properties by the density and speed of the solar wind, and the disconnection of the ionospheric and plasma sheet flow patterns.


Science | 2010

Highly Silicic Compositions on the Moon

Timothy D. Glotch; Paul G. Lucey; Joshua L. Bandfield; Benjamin Todd Greenhagen; I. R. Thomas; Richard C. Elphic; Neil E. Bowles; Michael Bruce Wyatt; Carlton C. Allen; Kerri L. Donaldson Hanna; David A. Paige

Lunar Reconnaissance The Lunar Reconnaissance Orbiter reached lunar orbit on 23 June 2009. Global data acquired since then now tell us about the impact history of the Moon and the igneous processes that shaped it. Using the Lunar Orbiter Laser Altimeter, Head et al. (p. 1504; see the cover) provide a new catalog of large lunar craters. In the lunar highlands, large-impact craters have obliterated preexisting craters of similar size, implying that crater counts in this region cannot be used effectively to determine the age of the underlying terrain. Crater counts based on the global data set indicate that the nature of the Moons impactor population has changed over time. Greenhagen et al. (p. 1507) and Glotch et al. (p. 1510) analyzed data from the Diviner Lunar Radiometer Experiment, which measures emitted thermal radiation and reflected solar radiation at infrared wavelengths. The silicate mineralogy revealed suggests the existence of more complex igneous processes on the Moon than previously assumed. Remote thermal emission spectroscopy reveals the existence of complex igneous processes on the Moon. Using data from the Diviner Lunar Radiometer Experiment, we show that four regions of the Moon previously described as “red spots” exhibit mid-infrared spectra best explained by quartz, silica-rich glass, or alkali feldspar. These lithologies are consistent with evolved rocks similar to lunar granites in the Apollo samples. The spectral character of these spots is distinct from surrounding mare and highlands material and from regions composed of pure plagioclase feldspar. The variety of landforms associated with the silicic spectral character suggests that both extrusive and intrusive silicic magmatism occurred on the Moon. Basaltic underplating is the preferred mechanism for silicic magma generation, leading to the formation of extrusive landforms. This mechanism or silicate liquid immiscibility could lead to the formation of intrusive bodies.


Journal of Geophysical Research | 2000

Plasmaspheric material at the reconnecting magnetopause

Yi-Jiun Su; Joseph E. Borovsky; M. F. Thomsen; Richard C. Elphic; D. J. McComas

During geomagnetic storms, cold and dense plasmaspheric material is observed to drain toward the dayside magnetopause when the solar wind pressure is strong and the interplanetary magnetic field (IMF) is southward. What is the fate of draining plasmaspheric material at the magnetopause? Does the plasmaspheric material participate in the dayside reconnection and then convect on open field lines through the polar cap? Or does the material become captured into the low-latitude boundary layer and then convect on closed field lines around the flanks of the magnetosphere? In this paper, we present observations from the Los Alamos magnetospheric plasma analyzers (MPA) onboard five satellites at geosynchronous orbit during 86 plasmaspheric drainage events. For a set of events where cold plasmaspheric material is observed immediately adjacent to the magnetopause/low-latitude boundary layer, we examine the detailed ion distributions, from ∼1 eV to ∼40 keV, for evidence that the draining plasmaspheric ions and the entering magnetosheath ions are simultaneously present on the same flux tube. Ten cases out of 57 are found where magnetosheath ions and plasmaspheric ions were unambiguously present simultaneously in the same flux tube, which is a signature that the plasmaspheric flux tubes do experience dayside reconnection. An additional ten cases strongly, but not as definitively, support this conclusion. Further, six of seven events with available IMF information have velocity space signatures that are consistent with expectations based on the reconnection process.


Science | 2011

Technical Comment on “Hydrogen Mapping of the Lunar South Pole Using the LRO Neutron Detector Experiment LEND”

D. J. Lawrence; Vincent R. Eke; Richard C. Elphic; William C. Feldman; Herbert O. Funsten; Thomas H. Prettyman; Luis F. A. Teodoro

Based on a study of high-energy epithermal (HEE) neutrons in data from the Lunar Exploration Neutron Detector (LEND) on NASA’s Lunar Reconnaissance Orbiter (LRO), the background from HEE neutrons is larger than initially estimated. Claims by Mitrofanov et al. (Reports, 22 October 2010, p. 483) of enhanced hydrogen abundance in sunlit portions of the lunar south pole and quantitative hydrogen concentration values in south pole permanently shaded regions are therefore insufficiently supported.


Astrobiology | 2010

Performance of Orbital Neutron Instruments for Spatially Resolved Hydrogen Measurements of Airless Planetary Bodies

D. J. Lawrence; Richard C. Elphic; W. C. Feldman; Herbert O. Funsten; Thomas H. Prettyman

Orbital neutron spectroscopy has become a standard technique for measuring planetary surface compositions from orbit. While this technique has led to important discoveries, such as the deposits of hydrogen at the Moon and Mars, a limitation is its poor spatial resolution. For omni-directional neutron sensors, spatial resolutions are 1-1.5 times the spacecrafts altitude above the planetary surface (or 40-600 km for typical orbital altitudes). Neutron sensors with enhanced spatial resolution have been proposed, and one with a collimated field of view is scheduled to fly on a mission to measure lunar polar hydrogen. No quantitative studies or analyses have been published that evaluate in detail the detection and sensitivity limits of spatially resolved neutron measurements. Here, we describe two complementary techniques for evaluating the hydrogen sensitivity of spatially resolved neutron sensors: an analytic, closed-form expression that has been validated with Lunar Prospector neutron data, and a three-dimensional modeling technique. The analytic technique, called the Spatially resolved Neutron Analytic Sensitivity Approximation (SNASA), provides a straightforward method to evaluate spatially resolved neutron data from existing instruments as well as to plan for future mission scenarios. We conclude that the existing detector--the Lunar Exploration Neutron Detector (LEND)--scheduled to launch on the Lunar Reconnaissance Orbiter will have hydrogen sensitivities that are over an order of magnitude poorer than previously estimated. We further conclude that a sensor with a geometric factor of approximately 100 cm(2) Sr (compared to the LEND geometric factor of approximately 10.9 cm(2) Sr) could make substantially improved measurements of the lunar polar hydrogen spatial distribution.


Icarus | 2018

Equatorial locations of water on Mars: Improved resolution maps based on Mars Odyssey Neutron Spectrometer data

Jack T. Wilson; Vincent R. Eke; Richard Massey; Richard C. Elphic; William C. Feldman; Sylvestre Maurice; Luis F. A. Teodoro

Abstract We present a map of the near subsurface hydrogen distribution on Mars, based on epithermal neutron data from the Mars Odyssey Neutron Spectrometer. The map’s spatial resolution is approximately improved two-fold via a new form of the pixon image reconstruction technique. We discover hydrogen-rich mineralogy far from the poles, including  ∼10 wt.% water equivalent hydrogen (WEH) on the flanks of the Tharsis Montes and  >40 wt.% WEH at the Medusae Fossae Formation (MFF). The high WEH abundance at the MFF implies the presence of bulk water ice. This supports the hypothesis of recent periods of high orbital obliquity during which water ice was stable on the surface. We find the young undivided channel system material in southern Elysium Planitia to be distinct from its surroundings and exceptionally dry; there is no evidence of hydration at the location in Elysium Planitia suggested to contain a buried water ice sea. Finally, we find that the sites of recurring slope lineae (RSL) do not correlate with subsurface hydration. This implies that RSL are not fed by large, near-subsurface aquifers, but are instead the result of either small (


Eos, Transactions American Geophysical Union | 1996

IS MAGNETIC RECONNECTION INTRINSICALLY TRANSIENT OR STEADY-STATE? THE EARTH'S MAGNETOPAUSE AS A LABORATORY

T. G. Onsager; Richard C. Elphic

In terms of universality, few physical processes rival magnetic reconnection. It is thought to be responsible for a wide variety of astronomical, solar, and laboratory plasma phenomena. In astrophysics, for example, transient emissions from compact X ray sources in binary systems are thought by some to originate in magnetic reconnection between a neutron stars magnetosphere and the surrounding accretion disk. In solar physics, it has long been thought that magnetic reconnection is at the root of the enormous energy release found in flares, and may also play an important role in causing coronal mass ejections. At the opposite extreme of size scales, laboratory plasma experiments show that magnetic reconnection is important in the stability, and instability, of reverse field pinches, spheromaks and tokamaks.

Collaboration


Dive into the Richard C. Elphic's collaboration.

Top Co-Authors

Avatar

D. J. Lawrence

Johns Hopkins University Applied Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

O. Gasnault

University of Toulouse

View shared research outputs
Top Co-Authors

Avatar

Alan B. Binder

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Paul G. Lucey

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge