Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard C. Hartley is active.

Publication


Featured researches published by Richard C. Hartley.


Nature | 2014

Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS

Edward T. Chouchani; Victoria R. Pell; Edoardo Gaude; Dunja Aksentijevic; Stephanie Y. Sundier; Ellen L. Robb; Angela Logan; Sergiy M. Nadtochiy; Emily N. J. Ord; Anthony C. Smith; Filmon Eyassu; Rachel Shirley; Chou-Hui Hu; Anna J Dare; Andrew M. James; Sebastian Rogatti; Richard C. Hartley; Simon Eaton; Ana S.H. Costa; Paul S. Brookes; Sean M. Davidson; Michael R. Duchen; Kourosh Saeb-Parsy; Michael J. Shattock; Alan J. Robinson; Lorraine M. Work; Christian Frezza; Thomas Krieg; Michael P. Murphy

Ischaemia-reperfusion injury occurs when the blood supply to an organ is disrupted and then restored, and underlies many disorders, notably heart attack and stroke. While reperfusion of ischaemic tissue is essential for survival, it also initiates oxidative damage, cell death and aberrant immune responses through the generation of mitochondrial reactive oxygen species (ROS). Although mitochondrial ROS production in ischaemia reperfusion is established, it has generally been considered a nonspecific response to reperfusion. Here we develop a comparative in vivo metabolomic analysis, and unexpectedly identify widely conserved metabolic pathways responsible for mitochondrial ROS production during ischaemia reperfusion. We show that selective accumulation of the citric acid cycle intermediate succinate is a universal metabolic signature of ischaemia in a range of tissues and is responsible for mitochondrial ROS production during reperfusion. Ischaemic succinate accumulation arises from reversal of succinate dehydrogenase, which in turn is driven by fumarate overflow from purine nucleotide breakdown and partial reversal of the malate/aspartate shuttle. After reperfusion, the accumulated succinate is rapidly re-oxidized by succinate dehydrogenase, driving extensive ROS generation by reverse electron transport at mitochondrial complex I. Decreasing ischaemic succinate accumulation by pharmacological inhibition is sufficient to ameliorate in vivo ischaemia-reperfusion injury in murine models of heart attack and stroke. Thus, we have identified a conserved metabolic response of tissues to ischaemia and reperfusion that unifies many hitherto unconnected aspects of ischaemia-reperfusion injury. Furthermore, these findings reveal a new pathway for metabolic control of ROS production in vivo, while demonstrating that inhibition of ischaemic succinate accumulation and its oxidation after subsequent reperfusion is a potential therapeutic target to decrease ischaemia-reperfusion injury in a range of pathologies.


Nature Medicine | 2013

Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I

Edward T. Chouchani; Carmen Methner; Sergiy M. Nadtochiy; Angela Logan; Victoria R. Pell; Shujing Ding; Andrew M. James; Helena M. Cochemé; Johannes Reinhold; Kathryn S. Lilley; Linda Partridge; Ian M. Fearnley; Alan J. Robinson; Richard C. Hartley; Robin A. J. Smith; Thomas Krieg; Paul S Brookes; Michael P. Murphy

Oxidative damage from elevated production of reactive oxygen species (ROS) contributes to ischemia-reperfusion injury in myocardial infarction and stroke. The mechanism by which the increase in ROS occurs is not known, and it is unclear how this increase can be prevented. A wide variety of nitric oxide donors and S-nitrosating agents protect the ischemic myocardium from infarction, but the responsible mechanisms are unclear. Here we used a mitochondria-selective S-nitrosating agent, MitoSNO, to determine how mitochondrial S-nitrosation at the reperfusion phase of myocardial infarction is cardioprotective in vivo in mice. We found that protection is due to the S-nitrosation of mitochondrial complex I, which is the entry point for electrons from NADH into the respiratory chain. Reversible S-nitrosation of complex I slows the reactivation of mitochondria during the crucial first minutes of the reperfusion of ischemic tissue, thereby decreasing ROS production, oxidative damage and tissue necrosis. Inhibition of complex I is afforded by the selective S-nitrosation of Cys39 on the ND3 subunit, which becomes susceptible to modification only after ischemia. Our results identify rapid complex I reactivation as a central pathological feature of ischemia-reperfusion injury and show that preventing this reactivation by modification of a cysteine switch is a robust cardioprotective mechanism and hence a rational therapeutic strategy.


Antioxidants & Redox Signaling | 2011

Mitochondria-Targeted Small Molecule Therapeutics and Probes

Robin A. J. Smith; Richard C. Hartley; Michael P. Murphy

SIGNIFICANCE Mitochondrial function is central to a wide range of biological processes in health and disease and there is considerable interest in developing small molecules that are taken up by mitochondria and act as either probes of mitochondrial function or therapeutics in vivo. RECENT ADVANCES Various strategies have been used to target small molecules to mitochondria, particularly conjugation to lipophilic cations and peptides, and most of the work so far has been on mitochondria-targeted antioxidants and redox probes. In vivo studies will reveal whether there are differences in the types of bioactive functionalities that can be delivered using different carriers. CRITICAL ISSUES The outstanding challenge in the area is to discover how to combine the established selective delivery to mitochondria with the specific delivery to particular organs. FUTURE DIRECTIONS These targeting methods will be used to direct many other bioactive molecules to mitochondria and many more wider applications other than just to antioxidants can be anticipated in the future.


Cell Metabolism | 2011

Measurement of H2O2 within Living Drosophila during Aging Using a Ratiometric Mass Spectrometry Probe Targeted to the Mitochondrial Matrix

Helena M. Cochemé; Caroline Quin; Stephen J. McQuaker; Filipe Cabreiro; Angela Logan; Tracy A. Prime; Irina Abakumova; Jigna V. Patel; Ian M. Fearnley; Andrew M. James; Carolyn M. Porteous; Robin A. J. Smith; Saima Saeed; Jane E. Carré; Mervyn Singer; David Gems; Richard C. Hartley; Linda Partridge; Michael P. Murphy

Summary Hydrogen peroxide (H2O2) is central to mitochondrial oxidative damage and redox signaling, but its roles are poorly understood due to the difficulty of measuring mitochondrial H2O2 in vivo. Here we report a ratiometric mass spectrometry probe approach to assess mitochondrial matrix H2O2 levels in vivo. The probe, MitoB, comprises a triphenylphosphonium (TPP) cation driving its accumulation within mitochondria, conjugated to an arylboronic acid that reacts with H2O2 to form a phenol, MitoP. Quantifying the MitoP/MitoB ratio by liquid chromatography-tandem mass spectrometry enabled measurement of a weighted average of mitochondrial H2O2 that predominantly reports on thoracic muscle mitochondria within living flies. There was an increase in mitochondrial H2O2 with age in flies, which was not coordinately altered by interventions that modulated life span. Our findings provide approaches to investigate mitochondrial ROS in vivo and suggest that while an increase in overall mitochondrial H2O2 correlates with aging, it may not be causative.


Nature Protocols | 2012

Using the mitochondria-targeted ratiometric mass spectrometry probe MitoB to measure H2O2 in living Drosophila

Helena M. Cochemé; Angela Logan; Tracy A. Prime; Irina Abakumova; Caroline Quin; Stephen J. McQuaker; Jigna V. Patel; Ian M. Fearnley; Andrew M. James; Carolyn M. Porteous; Robin A. J. Smith; Richard C. Hartley; Linda Partridge; Michael P. Murphy

The role of hydrogen peroxide (H2O2) in mitochondrial oxidative damage and redox signaling is poorly understood, because it is difficult to measure H2O2 in vivo. Here we describe a method for assessing changes in H2O2 within the mitochondrial matrix of living Drosophila. We use a ratiometric mass spectrometry probe, MitoB ((3-hydroxybenzyl)triphenylphosphonium bromide), which contains a triphenylphosphonium cation component that drives its accumulation within mitochondria. The arylboronic moiety of MitoB reacts with H2O2 to form a phenol product, MitoP. On injection into the fly, MitoB is rapidly taken up by mitochondria and the extent of its conversion to MitoP enables the quantification of H2O2. To assess MitoB conversion to MitoP, the compounds are extracted and the MitoP/MitoB ratio is quantified by liquid chromatography–tandem mass spectrometry relative to deuterated internal standards. This method facilitates the investigation of mitochondrial H2O2 in fly models of pathology and metabolic alteration, and it can also be extended to assess mitochondrial H2O2 production in mouse and cell culture studies.


Journal of the American Chemical Society | 2012

Selective uncoupling of individual mitochondria within a cell using a mitochondria-targeted photoactivated protonophore

Susan Chalmers; Stuart T. Caldwell; Caroline Quin; Tracy A. Prime; Andrew M. James; Andrew G. Cairns; Michael P. Murphy; John G. McCarron; Richard C. Hartley

Depolarization of an individual mitochondrion or small clusters of mitochondria within cells has been achieved using a photoactivatable probe. The probe is targeted to the matrix of the mitochondrion by an alkyltriphenylphosphonium lipophilic cation and releases the protonophore 2,4-dinitrophenol locally in predetermined regions in response to directed irradiation with UV light via a local photolysis system. This also provides a proof of principle for the general temporally and spatially controlled release of bioactive molecules, pharmacophores, or toxins to mitochondria with tissue, cell, or mitochondrion specificity.


Aging Cell | 2014

In vivo levels of mitochondrial hydrogen peroxide increase with age in mtDNA mutator mice

Angela Logan; Irina G. Shabalina; Tracy A. Prime; Sebastian Rogatti; Anastasia V. Kalinovich; Richard C. Hartley; Ralph C. Budd; Barbara Cannon; Michael P. Murphy

In mtDNA mutator mice, mtDNA mutations accumulate leading to a rapidly aging phenotype. However, there is little evidence of oxidative damage to tissues, and when analyzed ex vivo, no change in production of the reactive oxygen species (ROS) superoxide and hydrogen peroxide by mitochondria has been reported, undermining the mitochondrial oxidative damage theory of aging. Paradoxically, interventions that decrease mitochondrial ROS levels in vivo delay onset of aging. To reconcile these findings, we used the mitochondria‐targeted mass spectrometry probe MitoB to measure hydrogen peroxide within mitochondria of living mice. Mitochondrial hydrogen peroxide was the same in young mutator and control mice, but as the mutator mice aged, hydrogen peroxide increased. This suggests that the prolonged presence of mtDNA mutations in vivo increases hydrogen peroxide that contributes to an accelerated aging phenotype, perhaps through the activation of pro‐apoptotic and pro‐inflammatory redox signaling pathways.


Biology Letters | 2015

Individuals with higher metabolic rates have lower levels of reactive oxygen species in vivo

Karine Salin; Sonya K. Auer; Agata M. Rudolf; Graeme J. Anderson; Andrew G. Cairns; William Mullen; Richard C. Hartley; Colin Selman; Neil B. Metcalfe

There is increasing interest in the effect of energy metabolism on oxidative stress, but much ambiguity over the relationship between the rate of oxygen consumption and the generation of reactive oxygen species (ROS). Production of ROS (such as hydrogen peroxide, H2O2) in the mitochondria is primarily inferred indirectly from measurements in vitro, which may not reflect actual ROS production in living animals. Here, we measured in vivo H2O2 content using the recently developed MitoB probe that becomes concentrated in the mitochondria of living organisms, where it is converted by H2O2 into an alternative form termed MitoP; the ratio of MitoP/MitoB indicates the level of mitochondrial H2O2 in vivo. Using the brown trout Salmo trutta, we tested whether this measurement of in vivo H2O2 content over a 24 h-period was related to interindividual variation in standard metabolic rate (SMR). We showed that the H2O2 content varied up to 26-fold among fish of the same age and under identical environmental conditions and nutritional states. Interindividual variation in H2O2 content was unrelated to mitochondrial density but was significantly associated with SMR: fish with a higher mass-independent SMR had a lower level of H2O2. The mechanism underlying this observed relationship between SMR and in vivo H2O2 content requires further investigation, but may implicate mitochondrial uncoupling which can simultaneously increase SMR but reduce ROS production. To our knowledge, this is the first study in living organisms to show that individuals with higher oxygen consumption rates can actually have lower levels of H2O2.


Nature | 2018

Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1.

Evanna L. Mills; Dylan G. Ryan; Hiran A. Prag; Dina Dikovskaya; Deepthi Menon; Zbigniew Zasłona; Mark P. Jedrychowski; Ana S.H. Costa; Maureen Higgins; Emily Hams; John Szpyt; Marah C. Runtsch; M. King; Joanna F. McGouran; R. Fischer; Benedikt M. Kessler; Anne F. McGettrick; Mark M. Hughes; Richard G. Carroll; Lee M. Booty; Elena V. Knatko; Paul J. Meakin; Michael L.J. Ashford; Louise K. Modis; Gino Brunori; Daniel C. Sévin; Padraic G. Fallon; Stuart T. Caldwell; Edmund R. S. Kunji; Edward T. Chouchani

The endogenous metabolite itaconate has recently emerged as a regulator of macrophage function, but its precise mechanism of action remains poorly understood. Here we show that itaconate is required for the activation of the anti-inflammatory transcription factor Nrf2 (also known as NFE2L2) by lipopolysaccharide in mouse and human macrophages. We find that itaconate directly modifies proteins via alkylation of cysteine residues. Itaconate alkylates cysteine residues 151, 257, 288, 273 and 297 on the protein KEAP1, enabling Nrf2 to increase the expression of downstream genes with anti-oxidant and anti-inflammatory capacities. The activation of Nrf2 is required for the anti-inflammatory action of itaconate. We describe the use of a new cell-permeable itaconate derivative, 4-octyl itaconate, which is protective against lipopolysaccharide-induced lethality in vivo and decreases cytokine production. We show that type I interferons boost the expression of Irg1 (also known as Acod1) and itaconate production. Furthermore, we find that itaconate production limits the type I interferon response, indicating a negative feedback loop that involves interferons and itaconate. Our findings demonstrate that itaconate is a crucial anti-inflammatory metabolite that acts via Nrf2 to limit inflammation and modulate type I interferons.


Biochimica et Biophysica Acta | 2014

Using exomarkers to assess mitochondrial reactive species in vivo

Angela Logan; Helena M. Cochemé; Pamela Boon Li Pun; Nadezda Apostolova; Robin A. J. Smith; Lesley Larsen; David S. Larsen; Andrew M. James; Ian M. Fearnley; Sebastian Rogatti; Tracy A. Prime; Peter G. Finichiu; Anna J. Dare; Edward T. Chouchani; Victoria R. Pell; Carmen Methner; Caroline Quin; Stephen J. McQuaker; Thomas Krieg; Richard C. Hartley; Michael P. Murphy

BACKGROUND The ability to measure the concentrations of small damaging and signalling molecules such as reactive oxygen species (ROS) in vivo is essential to understanding their biological roles. While a range of methods can be applied to in vitro systems, measuring the levels and relative changes in reactive species in vivo is challenging. SCOPE OF REVIEW One approach towards achieving this goal is the use of exomarkers. In this, exogenous probe compounds are administered to the intact organism and are then transformed by the reactive molecules in vivo to produce a diagnostic exomarker. The exomarker and the precursor probe can be analysed ex vivo to infer the identity and amounts of the reactive species present in vivo. This is akin to the measurement of biomarkers produced by the interaction of reactive species with endogenous biomolecules. MAJOR CONCLUSIONS AND GENERAL SIGNIFICANCE Our laboratories have developed mitochondria-targeted probes that generate exomarkers that can be analysed ex vivo by mass spectrometry to assess levels of reactive species within mitochondria in vivo. We have used one of these compounds, MitoB, to infer the levels of mitochondrial hydrogen peroxide within flies and mice. Here we describe the development of MitoB and expand on this example to discuss how better probes and exomarkers can be developed. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.

Collaboration


Dive into the Richard C. Hartley's collaboration.

Top Co-Authors

Avatar

Michael P. Murphy

MRC Mitochondrial Biology Unit

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angela Logan

MRC Mitochondrial Biology Unit

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Garry G. Duthie

Rowett Research Institute

View shared research outputs
Top Co-Authors

Avatar

Tracy A. Prime

MRC Mitochondrial Biology Unit

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Krieg

University of Cambridge

View shared research outputs
Researchain Logo
Decentralizing Knowledge