Richard Courtemanche
Concordia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Richard Courtemanche.
The Journal of Neuroscience | 2004
William D. Hutchison; Jonathan O. Dostrovsky; Judith R. Walters; Richard Courtemanche; Thomas Boraud; Joshua A. Goldberg; Peter Brown
Neuronal oscillations underlie a number of physiological processes, such as respiration, diurnal rhythms of the sleep-wake cycle, and gait. Oscillatory activity can be observed in many different brain regions and can be synchronized across these different regions or nuclei. Oscillatory activity has
Proceedings of the National Academy of Sciences of the United States of America | 2007
William E. DeCoteau; Catherine Thorn; Daniel J. Gibson; Richard Courtemanche; Partha P. Mitra; Yasuo Kubota; Ann M. Graybiel
The striatum and hippocampus are conventionally viewed as complementary learning and memory systems, with the hippocampus specialized for fact-based episodic memory and the striatum for procedural learning and memory. Here we directly tested whether these two systems exhibit independent or coordinated activity patterns during procedural learning. We trained rats on a conditional T-maze task requiring navigational and cue-based associative learning. We recorded local field potential (LFP) activity with tetrodes chronically implanted in the caudoputamen and the CA1 field of the dorsal hippocampus during 6–25 days of training. We show that simultaneously recorded striatal and hippocampal theta rhythms are modulated differently as the rats learned to perform the T-maze task but nevertheless become highly coherent during the choice period of the maze runs in rats that successfully learned the task. Moreover, in the rats that acquired the task, the phase of the striatal–hippocampal theta coherence was modified toward a consistent antiphase relationship, and these changes occurred in proportion to the levels of learning achieved. We suggest that rhythmic oscillations, including theta-band activity, could influence not only neural processing in cortico-basal ganglia circuits but also dynamic interactions between basal ganglia-based and hippocampus-based forebrain circuits during the acquisition and performance of learned behaviors. Experience-dependent changes in coordination of oscillatory activity across brain structures thus may parallel the well known plasticity of spike activity that occurs as a function of experience.
Archives of Physical Medicine and Rehabilitation | 1996
Richard Courtemanche; Normand Teasdale; Pierre Boucher; Michelle Fleury; Yves Lajoie; Chantal Bard
OBJECTIVE To examine whether a reduced peripheral sensibility caused by diabetic neuropathy increases the attentional demands necessary for controlling and regulating gait. DESIGN Nonrandomized control trial. SETTING University motor performance laboratory. SUBJECTS Twelve diabetic patients with peripheral neuropathy and 7 control subjects, all volunteers. INTERVENTIONS All subjects first performed a control seated reaction time task. For the walking task, auditory stimuli were randomly presented in the third, fourth, or fifth walking cycle on left foot toe off on left foot heel contact. The subjects task was to respond verbally as fast as possible to the auditory stimulus, while maintaining progression. MAIN OUTCOME MEASURES Simple reaction times and kinematics of the gait pattern (cycle amplitude, cycle duration, cycle speed, cadence and percentage of time spent in the single support phase) were evaluated. RESULTS For the walking task, diabetic neuropathic patients had a smaller cycle amplitude, cycle speed, and percentage of time spent in the single support phase than control subjects. Also, reaction times while walking were higher for diabetic neuropathic patients than for control subjects. CONCLUSIONS Diabetic neuropathic patients show a less destabilizing and more conservative gait than control subjects. The increased attentional demands in gait for the diabetic neuropathic patients, along with their more conservative gait pattern, suggest that a lack of proprioception from the legs affects the control of gait. Diminished sensory information makes gait control more cognitively dependent in diabetic neuropathic persons than in control subjects.
Neuron | 2009
Guillaume P. Dugué; Nicolas Brunel; Vincent Hakim; Eric Schwartz; Mireille Chat; Maxime Lévesque; Richard Courtemanche; Clément Léna; Stéphane Dieudonné
Tonic motor control involves oscillatory synchronization of activity at low frequency (5-30 Hz) throughout the sensorimotor system, including cerebellar areas. We investigated the mechanisms underpinning cerebellar oscillations. We found that Golgi interneurons, which gate information transfer in the cerebellar cortex input layer, are extensively coupled through electrical synapses. When depolarized in vitro, these neurons displayed low-frequency oscillatory synchronization, imposing rhythmic inhibition onto granule cells. Combining experiments and modeling, we show that electrical transmission of the spike afterhyperpolarization is the essential component for oscillatory population synchronization. Rhythmic firing arises in spite of strong heterogeneities, is frequency tuned by the mean excitatory input to Golgi cells, and displays pronounced resonance when the modeled network is driven by oscillating inputs. In vivo, unitary Golgi cell activity was found to synchronize with low-frequency LFP oscillations occurring during quiet waking. These results suggest a major role for Golgi cells in coordinating cerebellar sensorimotor integration during oscillatory interactions.
Frontiers in Cellular Neuroscience | 2009
Richard Courtemanche; Pascal Chabaud; Y. Lamarre
The cerebellar cortex is remarkable for its organizational regularity, out of which task-related neural networks should emerge. In Purkinje cells, both complex and simple spike network patterns are evident in sensorimotor behavior. However, task-related patterns of activity in the granule cell layer (GCL) have been less studied. We recorded local field potential (LFP) activity simultaneously in pairs of GCL sites in monkeys performing an active expectancy (lever-press) task, in passive expectancy, and at rest. LFP sites were selected when they showed strong 10–25 Hz oscillations; pair orientation was in stereotaxic sagittal and coronal (mainly), and diagonal. As shown previously, LFP oscillations at each site were modulated during the lever-press task. Synchronization across LFP pairs showed an evident basic anisotropy at rest: sagittal pairs of LFPs were better synchronized (more than double the cross-correlation coefficients) than coronal pairs, and more than diagonal pairs. On the other hand, this basic anisotropy was modifiable: during the active expectancy condition, where sagittal and coronal orientations were tested, synchronization of LFP pairs would increase just preceding movement, most notably for the coronal pairs. This lateral extension of synchronization was not observed in passive expectancy. The basic pattern of synchronization at rest, favoring sagittal synchrony, thus seemed to adapt in a dynamic fashion, potentially extending laterally to include more cerebellar cortex elements. This dynamic anisotropy in LFP synchronization could underlie GCL network organization in the context of sensorimotor tasks.
Frontiers in Neural Circuits | 2013
Richard Courtemanche; Jennifer Claire Robinson; Daniel Ignacio Aponte
In many neuroscience fields, the study of local and global rhythmicity has been receiving increasing attention. These network influences could directly impact on how neuronal groups interact together, organizing for different contexts. The cerebellar cortex harbors a variety of such local circuit rhythms, from the rhythms in the cerebellar cortex per se, or those dictated from important afferents. We present here certain cerebellar oscillatory phenomena that have been recorded in rodents and primates. Those take place in a range of frequencies: from the more known oscillations in the 4–25 Hz band, such as the olivocerebellar oscillatory activity and the granule cell layer oscillations, to the more recently reported slow (<1 Hz oscillations), and the fast (>150 Hz) activity in the Purkinje cell layer. Many of these oscillations appear spontaneously in the circuits, and are modulated by behavioral imperatives. We review here how those oscillations are recorded, some of their modulatory mechanisms, and also identify some of the cerebellar nodes where they could interact. A particular emphasis has been placed on how these oscillations could be modulated by movement and certain neuropathological manifestations. Many of those oscillations could have a definite impact on the way information is processed in the cerebellum and how it interacts with other structures in a variety of contexts.
Experimental Brain Research | 2007
M. Levesque; Marc-André Bédard; Richard Courtemanche; Pierre-Luc Tremblay; P. Scherzer; Pierre J. Blanchet
Results obtained in patients with schizophrenia have shown that antipsychotic drugs may induce motor learning deficits correlated with the striatal type-2 dopamine receptors (D2R) occupancy. Other findings suggest that the role of the striatum in motor learning could be related to a process of “chunking” discrete movements into motor sequences. We therefore hypothesized that a D2R blocking substance, such as raclopride, would affect motor learning by specifically disrupting the grouping of movements into sequences. Two monkeys were first trained to perform a baseline-overlearned sequence (Seq. A) drug free. Then, a new sequence was learned (Seq. B) and the overlearned sequence was recalled OFF-drug (Seq. A recall OFF-drug). The effect of raclopride was then assessed on the learning of a third sequence (Seq. C), and on the recall of the overlearned sequence (Seq. A recall ON-drug). Results showed that performance related to the overlearned sequence remained the same in the three experimental conditions (Seq. A, Seq. A recall OFF-drug, Seq. A recall ON-drug), whether the primates received raclopride or not. On the other hand, new sequence learning was significantly affected during raclopride treatment (Seq. C), when compared with new sequence learning without the effect of any drug (Seq. B). Raclopride-induced disturbances consisted in performance fluctuations, which persisted even after many days of trials, and prevented the monkeys from reaching a stable level of performance. Further analyses also showed that these fluctuations appeared to be related to monkeys’ inability to group movements into single flowing motor sequences. The results of our study suggest that dopamine is involved in the stabilization or consolidation of motor performances, and that this function would involve a chunking of movements into well-integrated sequences.
Neurobiology of Disease | 2009
Maxime Lévesque; J. M. Pierre Langlois; Pablo Lema; Richard Courtemanche; Guillaume-Alexandre Bilodeau; Lionel Carmant
In this study, we demonstrate that gamma oscillations (30-50 Hz) recorded in the local field potentials (LFP) of the hippocampus are a marker of temporal lobe seizure propagation and that the level of LFP synchrony in the amygdalo-hippocampal network, during these oscillations, is related to the severity of seizures. Sprague-Dawley rats were given a single systemic dose of kainic acid (KA; 6 mg/kg, i.p.) and local field potential activity (1-475 Hz) of the dorsal hippocampus, the amygdala and the neocortex was recorded. Of 135 ictal discharges, 55 (40.7%) involved both limbic structures. We demonstrated that 78.2% of seizures involving both the hippocampus and amygdala showed hippocampal gamma oscillations. Seizure duration was also significantly correlated with the frequency of hippocampal gamma oscillations (r2=0.31, p<0.01) and LFP synchrony in the amygdalo-hippocampal network (r2=0.21, p<0.05). These results suggest that gamma oscillations in the amygdalo-hippocampal network could facilitate long-range synchrony and participate in the propagation of seizures.
Archive | 1993
Normand Teasdale; Yves Lajoie; Chantal Bard; Michelle Fleury; Richard Courtemanche
Decreased postural stability in aged persons is often related to impairment in visual, vestibular, and somatosensory functions. Research, however, has failed to establish a direct and strong relationship between postural stability and peripheral sensory functions indicating that a spectrum of other causes may also be involved with balance loss. The aim of this paper is to review several evidences suggesting that cognitive processing is an important aspect of posture control in both standing and walking tasks.
Frontiers in Systems Neuroscience | 2014
Ariana Frederick; Jonathan Bourget-Murray; C. Andrew Chapman; Shimon Amir; Richard Courtemanche
Circadian rhythms modulate behavioral processes over a 24 h period through clock gene expression. What is largely unknown is how these molecular influences shape neural activity in different brain areas. The clock gene Per2 is rhythmically expressed in the striatum and the cerebellum and its expression is linked with daily fluctuations in extracellular dopamine levels and D2 receptor activity. Electrophysiologically, dopamine depletion enhances striatal local field potential (LFP) oscillations. We investigated if LFP oscillations and synchrony were influenced by time of day, potentially via dopamine mechanisms. To assess the presence of a diurnal effect, oscillatory power and coherence were examined in the striatum and cerebellum of rats under urethane anesthesia at four different times of day zeitgeber time (ZT1, 7, 13 and 19—indicating number of hours after lights turned on in a 12:12 h light-dark cycle). We also investigated the diurnal response to systemic raclopride, a D2 receptor antagonist. Time of day affected the proportion of LFP oscillations within the 0–3 Hz band and the 3–8 Hz band. In both the striatum and the cerebellum, slow oscillations were strongest at ZT1 and weakest at ZT13. A 3–8 Hz oscillation was present when the slow oscillation was lowest, with peak 3–8 Hz activity occurring at ZT13. Raclopride enhanced the slow oscillations, and had the greatest effect at ZT13. Within the striatum and with the cerebellum, 0–3 Hz coherence was greatest at ZT1, when the slow oscillations were strongest. Coherence was also affected the most by raclopride at ZT13. Our results suggest that neural oscillations in the cerebellum and striatum, and the synchrony between these areas, are modulated by time of day, and that these changes are influenced by dopamine manipulation. This may provide insight into how circadian gene transcription patterns influence network electrophysiology. Future experiments will address how these network alterations are linked with behavior.