Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard G. Jenner is active.

Publication


Featured researches published by Richard G. Jenner.


Journal of Virology | 2001

Kaposi's Sarcoma-Associated Herpesvirus Latent and Lytic Gene Expression as Revealed by DNA Arrays

Richard G. Jenner; M. Mar Albà; Chris Boshoff; Paul Kellam

ABSTRACT Kaposis sarcoma-associated herpesvirus (KSHV; human herpesvirus 8) is associated with three human tumors, Kaposis sarcoma, primary effusion lymphoma (PEL), and multicentric Castlemans disease. KSHV encodes a number of homologs of cellular proteins involved in the cell cycle, signal transduction, and modulation of the host immune response. Of the virus complement of over 85 open reading frames (ORFs), the expression of only a minority has been characterized individually. We have constructed a nylon membrane-based DNA array which allows the expression of almost every ORF of KSHV to be measured simultaneously. A PEL-derived cell line, BC-3, was used to study the expression of KSHV during latency and after the induction of lytic replication. Cluster analysis, which arranges genes according to their expression profile, revealed a correlation between expression and assigned gene function that is consistent with the known stages of the herpesvirus life cycle. Furthermore, latent and lytic genes thought to be functionally related cluster into groups. The correlation between gene expression and function also infers possible roles for KSHV genes yet to be characterized.


PLOS Pathogens | 2011

HIV-1 Capsid-Cyclophilin Interactions Determine Nuclear Import Pathway, Integration Targeting and Replication Efficiency

Torsten Schaller; Karen E. Ocwieja; Jane Rasaiyaah; Amanda J. Price; Troy Brady; Shoshannah L. Roth; Stéphane Hué; Adam J. Fletcher; KyeongEun Lee; Vineet N. KewalRamani; Mahdad Noursadeghi; Richard G. Jenner; Leo C. James; Frederic D. Bushman; Greg J. Towers

Lentiviruses such as HIV-1 traverse nuclear pore complexes (NPC) and infect terminally differentiated non-dividing cells, but how they do this is unclear. The cytoplasmic NPC protein Nup358/RanBP2 was identified as an HIV-1 co-factor in previous studies. Here we report that HIV-1 capsid (CA) binds directly to the cyclophilin domain of Nup358/RanBP2. Fusion of the Nup358/RanBP2 cyclophilin (Cyp) domain to the tripartite motif of TRIM5 created a novel inhibitor of HIV-1 replication, consistent with an interaction in vivo. In contrast to CypA binding to HIV-1 CA, Nup358 binding is insensitive to inhibition with cyclosporine, allowing contributions from CypA and Nup358 to be distinguished. Inhibition of CypA reduced dependence on Nup358 and the nuclear basket protein Nup153, suggesting that CypA regulates the choice of the nuclear import machinery that is engaged by the virus. HIV-1 cyclophilin-binding mutants CA G89V and P90A favored integration in genomic regions with a higher density of transcription units and associated features than wild type virus. Integration preference of wild type virus in the presence of cyclosporine was similarly altered to regions of higher transcription density. In contrast, HIV-1 CA alterations in another patch on the capsid surface that render the virus less sensitive to Nup358 or TRN-SR2 depletion (CA N74D, N57A) resulted in integration in genomic regions sparse in transcription units. Both groups of CA mutants are impaired in replication in HeLa cells and human monocyte derived macrophages. Our findings link HIV-1 engagement of cyclophilins with both integration targeting and replication efficiency and provide insight into the conservation of viral cyclophilin recruitment.


Immunity | 2012

The Transcription Factor T-bet Regulates Intestinal Inflammation Mediated by Interleukin-7 Receptor(+) Innate Lymphoid Cells

Nick Powell; Alan W. Walker; Emilie Stolarczyk; James B. Canavan; M. Refik Gökmen; Ellen Marks; Ian Jackson; Ahmed Hashim; Michael A. Curtis; Richard G. Jenner; Jane K. Howard; Julian Parkhill; Thomas T. MacDonald; Graham M. Lord

Summary Mice lacking the transcription factor T-bet in the innate immune system develop microbiota-dependent colitis. Here, we show that interleukin-17A (IL-17A)-producing IL-7Rα+ innate lymphoid cells (ILCs) were potent promoters of disease in Tbx21−/−Rag2−/− ulcerative colitis (TRUC) mice. TNF-α produced by CD103−CD11b+ dendritic cells synergized with IL-23 to drive IL-17A production by ILCs, demonstrating a previously unrecognized layer of cellular crosstalk between dendritic cells and ILCs. We have identified Helicobacter typhlonius as a key disease trigger driving excess TNF-α production and promoting colitis in TRUC mice. Crucially, T-bet also suppressed the expression of IL-7R, a key molecule involved in controlling intestinal ILC homeostasis. The importance of IL-7R signaling in TRUC disease was highlighted by the dramatic reduction in intestinal ILCs and attenuated colitis following IL-7R blockade. Taken together, these data demonstrate the mechanism by which T-bet regulates the complex interplay between mucosal dendritic cells, ILCs, and the intestinal microbiota.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Kaposi's sarcoma-associated herpesvirus-infected primary effusion lymphoma has a plasma cell gene expression profile

Richard G. Jenner; Karine Maillard; Nicola Cattini; Robin A. Weiss; Chris Boshoff; Richard Wooster; Paul Kellam

Kaposis sarcoma-associated herpesvirus is associated with three human tumors: Kaposis sarcoma, and the B cell lymphomas, plasmablastic lymphoma associated with multicentric Castlemans disease, and primary effusion lymphoma (PEL). Epstein-Barr virus, the closest human relative of Kaposis sarcoma-associated herpesvirus, mimics host B cell signaling pathways to direct B cell development toward a memory B cell phenotype. Epstein-Barr virus-associated B cell tumors are presumed to arise as a consequence of this virus-mediated B cell activation. The stage of B cell development represented by PEL, how this stage relates to tumor pathology, and how this information may be used to treat the disease are largely unknown. In this study we used gene expression profiling to order a range of B cell tumors by stage of development. PEL gene expression closely resembles that of malignant plasma cells, including the low expression of mature B cell genes. The unfolded protein response is partially activated in PEL, but is fully activated in plasma cell tumors, linking endoplasmic reticulum stress to plasma cell development through XBP-1. PEL cells can be defined by the overexpression of genes involved in inflammation, cell adhesion, and invasion, which may be responsible for their presentation in body cavities. Similar to malignant plasma cells, all PEL samples tested express the vitamin D receptor and are sensitive to the vitamin D analogue drug EB 1089 (Seocalcitol).


Proceedings of the National Academy of Sciences of the United States of America | 2009

The transcription factors T-bet and GATA-3 control alternative pathways of T-cell differentiation through a shared set of target genes.

Richard G. Jenner; Michael J. Townsend; Ian J. Jackson; Kaiming Sun; Russell D. Bouwman; Richard A. Young; Laurie H. Glimcher; Graham M. Lord

Upon detection of antigen, CD4+ T helper (Th) cells can differentiate into a number of effector types that tailor the immune response to different pathogens. Alternative Th1 and Th2 cell fates are specified by the transcription factors T-bet and GATA-3, respectively. Only a handful of target genes are known for these two factors and because of this, the mechanism through which T-bet and GATA-3 induce differentiation toward alternative cell fates is not fully understood. Here, we provide a genomic map of T-bet and GATA-3 binding in primary human T cells and identify their target genes, most of which are previously unknown. In Th1 cells, T-bet associates with genes of diverse function, including those with roles in transcriptional regulation, chemotaxis and adhesion. GATA-3 occupies genes in both Th1 and Th2 cells and, unexpectedly, shares a large proportion of targets with T-bet. Re-complementation of T-bet alters the expression of these genes in a manner that mirrors their differential expression between Th1 and Th2 lineages. These data show that the choice between Th1 and Th2 lineage commitment is the result of the opposing action of T-bet and GATA-3 at a shared set of target genes and may provide a general paradigm for the interaction of lineage-specifying transcription factors.


Nature Communications | 2012

T-bet and GATA3 orchestrate Th1 and Th2 differentiation through lineage-specific targeting of distal regulatory elements

Aditi Kanhere; Arnulf Hertweck; Urvashi Bhatia; M. Refik Gökmen; Esperanza Perucha; Ian J. Jackson; Graham M. Lord; Richard G. Jenner

T-bet and GATA3 regulate the CD4+ T cell Th1/Th2 cell fate decision but little is known about the interplay between these factors outside of the murine Ifng and Il4/Il5/Il13 loci. Here we show that T-bet and GATA3 bind to multiple distal sites at immune regulatory genes in human effector T cells. These sites display markers of functional elements, act as enhancers in reporter assays and are associated with a requirement for T-bet and GATA3. Furthermore, we demonstrate that both factors bind distal sites at Tbx21 and that T-bet directly activates its own expression. We also show that in Th1 cells, GATA3 is distributed away from Th2 genes, instead occupying T-bet binding sites at Th1 genes, and that T-bet is sufficient to induce GATA3 binding at these sites. We propose these aspects of T-bet and GATA3 function are important for Th1/Th2 differentiation and for understanding transcription factor interactions in other T cell lineage decisions.


Biochimica et Biophysica Acta | 2002

The molecular pathology of Kaposi's sarcoma-associated herpesvirus

Richard G. Jenner; Chris Boshoff

Kaposis sarcoma (KS)-associated herpesvirus (KSHV) is the eighth and most recently identified human herpesvirus (HHV-8). KSHV was discovered in 1994 by Chang et al. who used representational difference analysis to search for DNA sequences present in AIDS-associated KS but not in adjacent normal skin [1]. The virus has since been shown to be specifically associated with all forms of this disease and has fulfilled all of Hills criteria for causation (reviewed in ). KSHV is also found in all cases of primary effusion lymphoma and in a plasmablastic variant of multicentric Castlemans disease. Over the last few years a wealth of data has been gained on the role of KSHV genes during infection. This review is an attempt to assemble this information into a more complete picture of how KSHV may cause disease.


Nature Immunology | 2015

Role and species-specific expression of colon T cell homing receptor GPR15 in colitis

Linh P. Nguyen; Junliang Pan; Thanh Theresa Dinh; Husein Hadeiba; Edward O'Hara; Ahmad Ebtikar; Arnulf Hertweck; M. Refik Gökmen; Graham M. Lord; Richard G. Jenner; Eugene C. Butcher; Aida Habtezion

Lymphocyte recruitment maintains intestinal immune homeostasis but also contributes to inflammation. The orphan chemoattractant receptor GPR15 mediates regulatory T cell homing and immunosuppression in the mouse colon. We show that GPR15 is also expressed by mouse TH17 and TH1 effector cells and is required for colitis in a model that depends on the trafficking of these cells to the colon. In humans GPR15 is expressed by effector cells, including pathogenic TH2 cells in ulcerative colitis, but is expressed poorly or not at all by colon regulatory T (Treg) cells. The TH2 transcriptional activator GATA-3 and the Treg-associated transcriptional repressor FOXP3 robustly bind human, but not mouse, GPR15 enhancer sequences, correlating with receptor expression. Our results highlight species differences in GPR15 regulation and suggest it as a potential therapeutic target for colitis.


PLOS Pathogens | 2013

Modulation of enhancer looping and differential gene targeting by Epstein-Barr virus transcription factors directs cellular reprogramming.

Michael J. McClellan; C. David Wood; Opeoluwa Ojeniyi; Tim J. Cooper; Aditi Kanhere; Aaron Arvey; Helen M. Webb; Richard D. Palermo; Marie L. Harth-Hertle; Bettina Kempkes; Richard G. Jenner; Michelle J. West

Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors, we discovered that 25% of binding sites were shared by EBNA 2 and the EBNA 3s and were located predominantly in enhancers. Moreover, 80% of potential EBNA 3A, 3B or 3C target genes were also targeted by EBNA 2, implicating extensive interplay between EBNA 2 and 3 proteins in cellular reprogramming. Investigating shared enhancer sites neighbouring two new targets (WEE1 and CTBP2) we discovered that EBNA 3 proteins repress transcription by modulating enhancer-promoter loop formation to establish repressive chromatin hubs or prevent assembly of active hubs. Re-ChIP analysis revealed that EBNA 2 and 3 proteins do not bind simultaneously at shared sites but compete for binding thereby modulating enhancer-promoter interactions. At an EBNA 3-only intergenic enhancer site between ADAM28 and ADAMDEC1 EBNA 3C was also able to independently direct epigenetic repression of both genes through enhancer-promoter looping. Significantly, studying shared or unique EBNA 3 binding sites at WEE1, CTBP2, ITGAL (LFA-1 alpha chain), BCL2L11 (Bim) and the ADAMs, we also discovered that different sets of EBNA 3 proteins bind regulatory elements in a gene and cell-type specific manner. Binding profiles correlated with the effects of individual EBNA 3 proteins on the expression of these genes, providing a molecular basis for the targeting of different sets of cellular genes by the EBNA 3s. Our results therefore highlight the influence of the genomic and cellular context in determining the specificity of gene deregulation by EBV and provide a paradigm for host-cell reprogramming through modulation of enhancer-promoter interactions by viral transcription factors.


Briefings in Functional Genomics | 2013

Transcription factor interplay in T helper cell differentiation

Catherine M. Evans; Richard G. Jenner

The differentiation of CD4 helper T cells into specialized effector lineages has provided a powerful model for understanding immune cell differentiation. Distinct lineages have been defined by differential expression of signature cytokines and the lineage-specifying transcription factors necessary and sufficient for their production. The traditional paradigm of differentiation towards Th1 and Th2 subtypes driven by T-bet and GATA3, respectively, has been extended to incorporate additional T cell lineages and transcriptional regulators. Technological advances have expanded our view of these lineage-specifying transcription factors to the whole genome and revealed unexpected interplay between them. From these data, it is becoming clear that lineage specification is more complex and plastic than previous models might have suggested. Here, we present an overview of the different forms of transcription factor interplay that have been identified and how T cell phenotypes arise as a product of this interplay within complex regulatory networks. We also suggest experimental strategies that will provide further insight into the mechanisms that underlie T cell lineage specification and plasticity.

Collaboration


Dive into the Richard G. Jenner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aditi Kanhere

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Kellam

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Chris Boshoff

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard A. Young

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge