Richard I. Morimoto
Northwestern University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Richard I. Morimoto.
Nature Cell Biology | 2000
Helen M. Beere; Beni B. Wolf; Kelvin Cain; Dick D. Mosser; Artin Mahboubi; Tomomi Kuwana; Pankaj Tailor; Richard I. Morimoto; Gerald M. Cohen; Douglas R. Green
The cellular-stress response can mediate cellular protection through expression of heat-shock protein (Hsp) 70, which can interfere with the process of apoptotic cell death. Stress-induced apoptosis proceeds through a defined biochemical process that involves cytochrome c, Apaf-1 and caspase proteases. Here we show, using a cell-free system, that Hsp70 prevents cytochrome c/dATP-mediated caspase activation, but allows the formation of Apaf-1 oligomers. Hsp70 binds to Apaf-1 but not to procaspase-9, and prevents recruitment of caspases to the apoptosome complex. Hsp70 therefore suppresses apoptosis by directly associating with Apaf-1 and blocking the assembly of a functional apoptosome.
Molecular and Cellular Biology | 1993
Kevin D. Sarge; Shawn P. Murphy; Richard I. Morimoto
The existence of multiple heat shock factor (HSF) genes in higher eukaryotes has promoted questions regarding the functions of these HSF family members, especially with respect to the stress response. To address these questions, we have used polyclonal antisera raised against mouse HSF1 and HSF2 to examine the biochemical, physical, and functional properties of these two factors in unstressed and heat-shocked mouse and human cells. We have identified HSF1 as the mediator of stress-induced heat shock gene transcription. HSF1 displays stress-induced DNA-binding activity, oligomerization, and nuclear localization, while HSF2 does not. Also, HSF1 undergoes phosphorylation in cells exposed to heat or cadmium sulfate but not in cells treated with the amino acid analog L-azetidine-2-carboxylic acid, indicating that phosphorylation of HSF1 is not essential for its activation. Interestingly, HSF1 and HSF2 overexpressed in transfected 3T3 cells both display constitutive DNA-binding activity, oligomerization, and transcriptional activity. These results demonstrate that HSF1 can be activated in the absence of physiological stress and also provide support for a model of regulation of HSF1 and HSF2 activity by a titratable negative regulatory factor.
Nature Reviews Molecular Cell Biology | 2010
Malin Åkerfelt; Richard I. Morimoto; Lea Sistonen
Heat shock factors (HSFs) are essential for all organisms to survive exposures to acute stress. They are best known as inducible transcriptional regulators of genes encoding molecular chaperones and other stress proteins. Four members of the HSF family are also important for normal development and lifespan-enhancing pathways, and the repertoire of HSF targets has thus expanded well beyond the heat shock genes. These unexpected observations have uncovered complex layers of post-translational regulation of HSFs that integrate the metabolic state of the cell with stress biology, and in doing so control fundamental aspects of the health of the proteome and ageing.
Genes & Development | 2008
Richard I. Morimoto
The long-term health of the cell is inextricably linked to protein quality control. Under optimal conditions this is accomplished by protein homeostasis, a highly complex network of molecular interactions that balances protein biosynthesis, folding, translocation, assembly/disassembly, and clearance. This review will examine the consequences of an imbalance in homeostasis on the flux of misfolded proteins that, if unattended, can result in severe molecular damage to the cell. Adaptation and survival requires the ability to sense damaged proteins and to coordinate the activities of protective stress response pathways and chaperone networks. Yet, despite the abundance and apparent capacity of chaperones and other components of homeostasis to restore folding equilibrium, the cell appears poorly adapted for chronic proteotoxic stress when conformationally challenged aggregation-prone proteins are expressed in cancer, metabolic disease, and neurodegenerative disease. The decline in biosynthetic and repair activities that compromises the integrity of the proteome is influenced strongly by genes that control aging, thus linking stress and protein homeostasis with the health and life span of the organism.
Molecular and Cellular Biology | 2000
Dick D. Mosser; Antoine W. Caron; Lucie Bourget; Anatoli B. Meriin; Michael Y. Sherman; Richard I. Morimoto; Bernard Massie
ABSTRACT Cellular stress can trigger a process of self-destruction known as apoptosis. Cells can also respond to stress by adaptive changes that increase their ability to tolerate normally lethal conditions. Expression of the major heat-inducible protein hsp70 protects cells from heat-induced apoptosis. hsp70 has been reported to act in some situations upstream or downstream of caspase activation, and its protective effects have been said to be either dependent on or independent of its ability to inhibit JNK activation. Purified hsp70 has been shown to block procaspase processing in vitro but is unable to inhibit the activity of active caspase 3. Since some aspects of hsp70 function can occur in the absence of its chaperone activity, we examined whether hsp70 lacking its ATPase domain or the C-terminal EEVD sequence that is essential for peptide binding was required for the prevention of apoptosis. We generated stable cell lines with tetracycline-regulated expression of hsp70, hsc70, and chaperone-defective hsp70 mutants lacking the ATPase domain or the C-terminal EEVD sequence or containing AAAA in place of EEVD. Overexpression of hsp70 or hsc70 protected cells from heat shock-induced cell death by preventing the processing of procaspases 9 and 3. This required the chaperone function of hsp70 since hsp70 mutant proteins did not prevent procaspase processing or provide protection from apoptosis. JNK activation was inhibited by both hsp70 and hsc70 and by each of the hsp70 domain mutant proteins. The chaperoning activity of hsp70 is therefore not required for inhibition of JNK activation, and JNK inhibition was not sufficient for the prevention of apoptosis. Release of cytochrome c from mitochondria was inhibited in cells expressing full-length hsp70 but not in cells expressing the protein with ATPase deleted. Together with the recently identified ability of hsp70 to inhibit cytochromec-mediated procaspase 9 processing in vitro, these data demonstrate that hsp70 can affect the apoptotic pathway at the levels of both cytochrome c release and initiator caspase activation and that the chaperone function of hsp70 is required for these effects.
Cell | 2001
Xiaohua Shen; Ronald E. Ellis; Kyungho Lee; Chuan Yin Liu; Kun Yang; Aaron Solomon; Hiderou Yoshida; Richard I. Morimoto; David M. Kurnit; Kazutoshi Mori; Randal J. Kaufman
The unfolded protein response (UPR) is a transcriptional and translational intracellular signaling pathway activated by the accumulation of unfolded proteins in the lumen of the endoplasmic reticulum (ER). We have used C. elegans as a genetic model system to dissect UPR signaling in a multicellular organism. C. elegans requires ire-1-mediated splicing of xbp-1 mRNA for UPR gene transcription and survival upon ER stress. In addition, ire-1/xbp-1 acts with pek-1, a protein kinase that mediates translation attenuation, in complementary pathways that are essential for worm development and survival. We propose that UPR transcriptional activation by ire-1 as well as translational attenuation by pek-1 maintain ER homeostasis. The results demonstrate that the UPR and ER homeostasis are essential for metazoan development.
Proceedings of the National Academy of Sciences of the United States of America | 2002
James F. Morley; Heather R. Brignull; Jill J. Weyers; Richard I. Morimoto
Studies of the mutant gene in Huntingtons disease, and for eight related neurodegenerative disorders, have identified polyglutamine (polyQ) expansions as a basis for cellular toxicity. This finding has led to a disease hypothesis that protein aggregation and cellular dysfunction can occur at a threshold of approximately 40 glutamine residues. Here, we test this hypothesis by expression of fluorescently tagged polyQ proteins (Q29, Q33, Q35, Q40, and Q44) in the body wall muscle cells of Caenorhabditis elegans and show that young adults exhibit a sharp boundary at 35–40 glutamines associated with the appearance of protein aggregates and loss of motility. Surprisingly, genetically identical animals expressing near-threshold polyQ repeats exhibited a high degree of variation in the appearance of protein aggregates and cellular toxicity that was dependent on repeat length and exacerbated during aging. The role of genetically determined aging pathways in the progression of age-dependent polyQ-mediated aggregation and cellular toxicity was tested by expressing Q82 in the background of age-1 mutant animals that exhibit an extended lifespan. We observed a dramatic delay of polyQ toxicity and appearance of protein aggregates. These data provide experimental support for the threshold hypothesis of polyQ-mediated toxicity in an experimental organism and emphasize the importance of the threshold as a point at which genetic modifiers and aging influence biochemical environment and protein homeostasis in the cell.
Science | 2009
Sandy D. Westerheide; Julius Anckar; Stanley M. Stevens; Lea Sistonen; Richard I. Morimoto
Heat shock factor 1 (HSF1) is essential for protecting cells from protein-damaging stress associated with misfolded proteins and regulates the insulin-signaling pathway and aging. Here, we show that human HSF1 is inducibly acetylated at a critical residue that negatively regulates DNA binding activity. Activation of the deacetylase and longevity factor SIRT1 prolonged HSF1 binding to the heat shock promoter Hsp70 by maintaining HSF1 in a deacetylated, DNA–binding competent state. Conversely, down-regulation of SIRT1 accelerated the attenuation of the heat shock response (HSR) and release of HSF1 from its cognate promoter elements. These results provide a mechanistic basis for the requirement of HSF1 in the regulation of life span and establish a role for SIRT1 in protein homeostasis and the HSR.
Science | 2006
Tali Gidalevitz; Anat Peres Ben-Zvi; Kim Ho; Heather R. Brignull; Richard I. Morimoto
Numerous human diseases are associated with the chronic expression of misfolded and aggregation-prone proteins. The expansion of polyglutamine residues in unrelated proteins is associated with the early onset of neurodegenerative disease. To understand how the presence of misfolded proteins leads to cellular dysfunction, we employed Caenorhabditis elegans polyglutamine aggregation models. Here, we find that polyglutamine expansions disrupted the global balance of protein folding quality control, resulting in the loss of function of diverse metastable proteins with destabilizing temperature-sensitive mutations. In turn, these proteins, although innocuous under normal physiological conditions, enhanced the aggregation of polyglutamine proteins. Thus, weak folding mutations throughout the genome can function as modifiers of polyglutamine phenotypes and toxicity.
The EMBO Journal | 1997
Shinichi Takayama; David N. Bimston; Shu Ichi Matsuzawa; Brian C. Freeman; Christine Aime-Sempe; Zhihua Xie; Richard I. Morimoto; John C. Reed
The 70 kDa heat shock family of molecular chaperones is essential to a variety of cellular processes, yet it is unclear how these proteins are regulated in vivo. We present evidence that the protein BAG‐1 is a potential modulator of the molecular chaperones, Hsp70 and Hsc70. BAG‐1 binds to the ATPase domain of Hsp70 and Hsc70, without requirement for their carboxy‐terminal peptide‐binding domain, and can be co‐immunoprecipitated with Hsp/Hsc70 from cell lysates. Purified BAG‐1 and Hsp/Hsc70 efficiently form heteromeric complexes in vitro. BAG‐1 inhibits Hsp/Hsc70‐mediated in vitro refolding of an unfolded protein substrate, whereas BAG‐1 mutants that fail to bind Hsp/Hsc70 do not affect chaperone activity. The binding of BAG‐1 to one of its known cellular targets, Bcl‐2, in cell lysates was found to be dependent on ATP, consistent with the possible involvement of Hsp/Hsc70 in complex formation. Overexpression of BAG‐1 also protected certain cell lines from heat shock‐induced cell death. The identification of Hsp/Hsc70 as a partner protein for BAG‐1 may explain the diverse interactions observed between BAG‐1 and several other proteins, including Raf‐1, steroid hormone receptors and certain tyrosine kinase growth factor receptors. The inhibitory effects of BAG‐1 on Hsp/Hsc70 chaperone activity suggest that BAG‐1 represents a novel type of chaperone regulatory proteins and thus suggest a link between cell signaling, cell death and the stress response.