Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard J. Murphy is active.

Publication


Featured researches published by Richard J. Murphy.


Environmental Pollution | 2001

Leaching of chromated copper arsenate wood preservatives: a review

J.A. Hingston; Chris Collins; Richard J. Murphy; J.N. Lester

Recent studies have generated conflicting data regarding the bioaccumulation and toxicity of leachates from preservative-treated wood. Due to the scale of the wood preserving industry, timber treated with the most common preservative, chromated copper arsenate (CCA), may form a significant source of metals in the aquatic environment. The existing literature on leaching of CCA is reviewed, and the numerous factors affecting leaching rates, including pH, salinity, treatment and leaching test protocols are discussed. It is concluded from the literature that insufficient data exists regarding these effects to allow accurate quantification of leaching rates, and also highlights the need for standardised leaching protocols.


Philosophical Transactions of the Royal Society B | 2009

Biodegradable and compostable alternatives to conventional plastics

J. H. Song; Richard J. Murphy; Ramani Narayan; G. B. H. Davies

Packaging waste forms a significant part of municipal solid waste and has caused increasing environmental concerns, resulting in a strengthening of various regulations aimed at reducing the amounts generated. Among other materials, a wide range of oil-based polymers is currently used in packaging applications. These are virtually all non-biodegradable, and some are difficult to recycle or reuse due to being complex composites having varying levels of contamination. Recently, significant progress has been made in the development of biodegradable plastics, largely from renewable natural resources, to produce biodegradable materials with similar functionality to that of oil-based polymers. The expansion in these bio-based materials has several potential benefits for greenhouse gas balances and other environmental impacts over whole life cycles and in the use of renewable, rather than finite resources. It is intended that use of biodegradable materials will contribute to sustainability and reduction in the environmental impact associated with disposal of oil-based polymers. The diversity of biodegradable materials and their varying properties makes it difficult to make simple, generic assessments such as biodegradable products are all ‘good’ or petrochemical-based products are all ‘bad’. This paper discusses the potential impacts of biodegradable packaging materials and their waste management, particularly via composting. It presents the key issues that inform judgements of the benefits these materials have in relation to conventional, petrochemical-based counterparts. Specific examples are given from new research on biodegradability in simulated ‘home’ composting systems. It is the view of the authors that biodegradable packaging materials are most suitable for single-use disposable applications where the post-consumer waste can be locally composted.


Philosophical Transactions of the Royal Society B | 2010

Energy and the food system

Jeremy Woods; Adrian G. Williams; John K. Hughes; Mairi J. Black; Richard J. Murphy

Modern agriculture is heavily dependent on fossil resources. Both direct energy use for crop management and indirect energy use for fertilizers, pesticides and machinery production have contributed to the major increases in food production seen since the 1960s. However, the relationship between energy inputs and yields is not linear. Low-energy inputs can lead to lower yields and perversely to higher energy demands per tonne of harvested product. At the other extreme, increasing energy inputs can lead to ever-smaller yield gains. Although fossil fuels remain the dominant source of energy for agriculture, the mix of fuels used differs owing to the different fertilization and cultivation requirements of individual crops. Nitrogen fertilizer production uses large amounts of natural gas and some coal, and can account for more than 50 per cent of total energy use in commercial agriculture. Oil accounts for between 30 and 75 per cent of energy inputs of UK agriculture, depending on the cropping system. While agriculture remains dependent on fossil sources of energy, food prices will couple to fossil energy prices and food production will remain a significant contributor to anthropogenic greenhouse gas emissions. Technological developments, changes in crop management, and renewable energy will all play important roles in increasing the energy efficiency of agriculture and reducing its reliance of fossil resources.


Gcb Bioenergy | 2009

Greenhouse gas emissions from four bioenergy crops in England and Wales: Integrating spatial estimates of yield and soil carbon balance in life cycle analyses

Jonathan Hillier; Carly Whittaker; Gordon Dailey; M. Aylott; Eric Casella; Goetz M. Richter; Andrew B. Riche; Richard J. Murphy; Gail Taylor; Pete Smith

Accurate estimation of the greenhouse gas (GHG) mitigation potential of bioenergy crops requires the integration of a significant component of spatially varying information. In particular, crop yield and soil carbon (C) stocks are variables which are generally soil type and climate dependent. Since gaseous emissions from soil C depend on current C stocks, which in turn are related to previous land management it is important to consider both previous and proposed future land use in any C accounting assessment. We have conducted a spatially explicit study for England and Wales, coupling empirical yield maps with the RothC soil C turnover model to simulate soil C dynamics. We estimate soil C changes under proposed planting of four bioenergy crops, Miscanthus (Miscanthus×giganteus), short rotation coppice (SRC) poplar (Populus trichocarpa Torr. & Gray ×P. trichocarpa, var. Trichobel), winter wheat, and oilseed rape. This is then related to the former land use – arable, pasture, or forest/seminatural, and the outputs are then assessed in the context of a life cycle analysis (LCA) for each crop. By offsetting emissions from management under the previous land use, and considering fossil fuel C displaced, the GHG balance is estimated for each of the 12 land use change transitions associated with replacing arable, grassland, or forest/seminatural land, with each of the four bioenergy crops. Miscanthus and SRC are likely to have a mostly beneficial impact in reducing GHG emissions, while oilseed rape and winter wheat have either a net GHG cost, or only a marginal benefit. Previous land use is important and can make the difference between the bioenergy crop being beneficial or worse than the existing land use in terms of GHG balance.


Journal of Agricultural and Food Chemistry | 2009

Biomass Characterization of Buddleja davidii: A Potential Feedstock for Biofuel Production

Bassem B. Hallac; Poulomi Sannigrahi; Yunqiao Pu; Michael J. Ray; Richard J. Murphy; Arthur J. Ragauskas

A compositional analysis was performed on Buddleja davidii to determine its general biomass characteristics and provide detailed analysis of the chemical structures of its cellulose and lignin using NMR. B. davidii is a new potential lignocellulosic bioresource for producing bioethanol because it has several attractive agroenergy features. The biomass composition of B. davidii is 30% lignin, 35% cellulose, and 34% hemicellulose. Solid-state CP/MAS (13)C NMR showed that 33% of the cellulose is para-crystalline and 41% is at inaccessible surfaces. Both quantitative (13)C and (31)P NMR were used to examine the structure of lignin. The lignin was determined to be guaiacyl and syringyl with an h:g:s ratio of 0:81:19.


Science of The Total Environment | 2012

LCA data quality: sensitivity and uncertainty analysis.

Miao Guo; Richard J. Murphy

Life cycle assessment (LCA) data quality issues were investigated by using case studies on products from starch-polyvinyl alcohol based biopolymers and petrochemical alternatives. The time horizon chosen for the characterization models was shown to be an important sensitive parameter for the environmental profiles of all the polymers. In the global warming potential and the toxicity potential categories the comparison between biopolymers and petrochemical counterparts altered as the time horizon extended from 20 years to infinite time. These case studies demonstrated that the use of a single time horizon provide only one perspective on the LCA outcomes which could introduce an inadvertent bias into LCA outcomes especially in toxicity impact categories and thus dynamic LCA characterization models with varying time horizons are recommended as a measure of the robustness for LCAs especially comparative assessments. This study also presents an approach to integrate statistical methods into LCA models for analyzing uncertainty in industrial and computer-simulated datasets. We calibrated probabilities for the LCA outcomes for biopolymer products arising from uncertainty in the inventory and from data variation characteristics this has enabled assigning confidence to the LCIA outcomes in specific impact categories for the biopolymer vs. petrochemical polymer comparisons undertaken. Uncertainty combined with the sensitivity analysis carried out in this study has led to a transparent increase in confidence in the LCA findings. We conclude that LCAs lacking explicit interpretation of the degree of uncertainty and sensitivities are of limited value as robust evidence for decision making or comparative assertions.


Science of The Total Environment | 2012

Environmental assessment of energy production based on long term commercial willow plantations in Sweden.

Sara González-García; Blas Mola-Yudego; Ioannis Dimitriou; Pär Aronsson; Richard J. Murphy

The present paper analyzed the environmental assessment of short rotation willow plantations in Sweden based on the standard framework of Life Cycle Assessment (LCA) from the International Standards Organisation. The analysis is focused on two alternative management regimes for willow plantations dedicated to biomass production for energy purposes. The data used included the averages of a large sample of commercial plantations. One of the scenarios is carried out under nitrogen based fertilized conditions and the other under non-fertilized management with total biomass yields (dry weight) of 140t/ha and 86t/ha over a 21 and 22-year life time respectively. The environmental profile was analyzed in terms of the potentials for abiotic depletion, acidification, eutrophication, global warming, ozone layer depletion, photochemical oxidant formation, human toxicity, fresh water aquatic ecotoxicity, marine aquatic ecotoxicity and terrestrial ecotoxicity. In addition, an energy analysis was performed using the cumulative energy demand method (CED). The application of nitrogen based fertilizers allows an increase in the biomass yield per ha of up to 40% although the contributions to almost all impact categories, particularly the eutrophication potential and toxicity potential impact categories are also considerably higher. Conversely, due to the higher biomass yields achieved with fertilization of these willow plantations, that regime presents a better overall environmental profile in terms of energy yield and global warming potential.


Energy and Environmental Science | 2012

Technology performance and economic feasibility of bioethanol production from various waste papers

Lei Wang; Mahdi Sharifzadeh; Richard H. Templer; Richard J. Murphy

Producing bioethanol from various wastes is a promising strategy to meet part of the transport energy demand and also to contribute to waste management. Waste papers (newspaper, office paper, magazines and cardboard in this work) with their 50% to 70% carbohydrate content are potential raw materials for bioethanol production. From both technical and economic aspects, bioethanol production processes for various waste papers were evaluated in this study. High-solids loading (15% w/w) enzymatic hydrolyses using two enzyme alternatives (Celluclast 1.5 L supplemented with Novozyme 188 and Cellic Ctec 1) achieved glucan conversion efficiencies from waste papers of 50% to 76%. Base case process models developed using these experimental data were then applied to an economic analysis to determine the minimum ethanol selling price (MESP) for bioethanol derived from the waste papers using a discounted cash flow method. The effects of several processing parameters: alternative product recovery processes, enzyme loading, enzymatic hydrolysis residence time and two enzyme alternatives on the MESP are explored. Bioethanol produced from cardboard (using Cellic Ctec 1) resulted in the lowest MESP. Two state-of-the-art technologies, dilute acid pre-treatment on office paper and oxidative lime pre-treatment on newspaper, were also investigated. This study suggests that bioethanol production from waste papers is feasible and profitable from both technical and economic points of view.


Bioenergy Research | 2010

QTL Mapping of Enzymatic Saccharification in Short Rotation Coppice Willow and Its Independence from Biomass Yield

Nicholas Jb Brereton; Frederic E. Pitre; Steven J. Hanley; Michael J. Ray; A. Karp; Richard J. Murphy

Short rotation coppice (SRC) willows (Salix spp.) are fast-growing woody plants which can achieve high biomass yields over short growth cycles with low agrochemical inputs. Biomass from SRC willow is already used for heat and power, but its potential as a source of lignocellulose for liquid transport biofuels has still to be assessed. In bioethanol production from lignocellulose, enzymatic saccharification is used as an approach to release glucose from cellulose in the plant cell walls. In this study, 138 genotypes of a willow mapping population were used to examine variation in enzymatic glucose release from stem biomass to study relationships between this trait and biomass yield traits and to identify quantitative trait loci (QTL) associated with enzymatic saccharification yield. Significant natural variation was found in glucose yields from willow stem biomass. This trait was independent of biomass yield traits. Four enzyme-derived glucose QTL were mapped onto chromosomes V, X, XI, and XVI, indicating that enzymatic saccharification yields are under significant genetic influence. Our results show that SRC willow has strong potential as a source of bioethanol and that there may be opportunities to improve the breeding programs for willows for increasing enzymatic saccharification yields and biofuel production.


Bioresource Technology | 2012

A Life Cycle Assessment (LCA) comparison of three management options for waste papers: bioethanol production, recycling and incineration with energy recovery.

Lei Wang; Richard H. Templer; Richard J. Murphy

This study uses Life Cycle Assessment (LCA) to assess the environmental profiles and greenhouse gas (GHG) emissions for bioethanol production from waste papers and to compare them with the alternative waste management options of recycling or incineration with energy recovery. Bioethanol production scenarios both with and without pre-treatments were conducted. It was found that an oxidative lime pre-treatment reduced GHG emissions and overall environmental burdens for a newspaper-to-bioethanol process whereas a dilute acid pre-treatment raised GHG emissions and overall environmental impacts for an office paper-to-bioethanol process. In the comparison of bioethanol production systems with alternative management of waste papers by different technologies, it was found that the environmental profiles of each system vary significantly and this variation affects the outcomes of the specific comparisons made. Overall, a number of configurations of bioethanol production from waste papers offer environmentally favourable or neutral profiles when compared with recycling or incineration.

Collaboration


Dive into the Richard J. Murphy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miao Guo

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lei Wang

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeremy Woods

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sara González-García

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge