Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard Keiser is active.

Publication


Featured researches published by Richard Keiser.


eurographics | 2006

Physically Based Deformable Models in Computer Graphics

Andrew Nealen; Matthias Müller; Richard Keiser; Eddy Boxerman; Mark Carlson

Physically based deformable models have been widely embraced by the Computer Graphics community. Many problems outlined in a previous survey by Gibson and Mirtich have been addressed, thereby making these models interesting and useful for both offline and real‐time applications, such as motion pictures and video games. In this paper, we present the most significant contributions of the past decade, which produce such impressive and perceivably realistic animations and simulations: finite element/difference/volume methods, mass‐spring systems, mesh‐free methods, coupled particle systems and reduced deformable models‐based on modal analysis. For completeness, we also make a connection to the simulation of other continua, such as fluids, gases and melting objects. Since time integration is inherent to all simulated phenomena, the general notion of time discretization is treated separately, while specifics are left to the respective models. Finally, we discuss areas of application, such as elastoplastic deformation and fracture, cloth and hair animation, virtual surgery simulation, interactive entertainment and fluid/smoke animation, and also suggest areas for future research.


symposium on computer animation | 2004

Point based animation of elastic, plastic and melting objects

Matthias Müller; Richard Keiser; Andrew Nealen; Mark Pauly; Markus H. Gross; Marc Alexa

We present a method for modeling and animating a wide spectrum of volumetric objects, with material properties anywhere in the range from stiff elastic to highly plastic. Both the volume and the surface representation are point based, which allows arbitrarily large deviations form the original shape. In contrast to previous point based elasticity in computer graphics, our physical model is derived from continuum mechanics, which allows the specification of common material properties such as Youngs Modulus and Poissons Ratio. In each step, we compute the spatial derivatives of the discrete displacement field using a Moving Least Squares (MLS) procedure. From these derivatives we obtain strains, stresses and elastic forces at each simulated point. We demonstrate how to solve the equations of motion based on these forces, with both explicit and implicit integration schemes. In addition, we propose techniques for modeling and animating a point-sampled surface that dynamically adapts to deformations of the underlying volumetric model.


Computer Graphics Forum | 2003

Multi-scale Feature Extraction on Point-Sampled Surfaces

Mark Pauly; Richard Keiser; Markus H. Gross

We present a new technique for extracting line‐type features on point‐sampled geometry. Given an unstructuredpoint cloud as input, our method first applies principal component analysis on local neighborhoods toclassify points according to the likelihood that they belong to a feature. Using hysteresis thresholding, we thencompute a minimum spanning graph as an initial approximation of the feature lines. To smooth out the featureswhile maintaining a close connection to the underlying surface, we use an adaptation of active contour models.Central to our method is a multi‐scale classification operator that allows feature analysis at multiplescales, using the size of the local neighborhoods as a discrete scale parameter. This significantly improves thereliability of the detection phase and makes our method more robust in the presence of noise. To illustrate theusefulness of our method, we have implemented a non‐photorealistic point renderer to visualize point‐sampledsurfaces as line drawings of their extracted feature curves.


international conference on computer graphics and interactive techniques | 2007

Adaptively sampled particle fluids

Bart Adams; Mark Pauly; Richard Keiser; Leonidas J. Guibas

We present novel adaptive sampling algorithms for particle-based fluid simulation. We introduce a sampling condition based on geometric local feature size that allows focusing computational resources in geometrically complex regions, while reducing the number of particles deep inside the fluid or near thick flat surfaces. Further performance gains are achieved by varying the sampling density according to visual importance. In addition, we propose a novel fluid surface definition based on approximate particle-to-surface distances that are carried along with the particles and updated appropriately. The resulting surface reconstruction method has several advantages over existing methods, including stability under particle resampling and suitability for representing smooth flat surfaces. We demonstrate how our adaptive sampling and distance-based surface reconstruction algorithms lead to significant improvements in time and memory as compared to single resolution particle simulations, without significantly affecting the fluid flow behavior.


symposium on computer animation | 2005

Particle-based fluid-fluid interaction

Matthias Müller; Barbara Solenthaler; Richard Keiser; Markus H. Gross

The interesting and complex behavior of fluids emerges mainly from interaction processes. While interactions of fluids with static or dynamic solids has caught some attention in computer graphics lately, the mutual interaction of different types of fluids such as air and water or water and wax has received much less attention although these types of interaction are the basis for a variety of important phenomena.In this paper we propose a new technique to model fluid-fluid interaction based on the Smoothed Particle Hydrodynamics (SPH) method. For the simulation of air-water interaction, air particles are generated on the fly only where needed. We also model dynamic phase changes and interface forces. Our technique makes possible the simulation of phenomena such as boiling water, trapped air and the dynamics of a lava lamp.


international conference on computer graphics and interactive techniques | 2005

Meshless animation of fracturing solids

Mark Pauly; Richard Keiser; Bart Adams; Philip Dutré; Markus H. Gross; Leonidas J. Guibas

We present a new meshless animation framework for elastic and plastic materials that fracture. Central to our method is a highly dynamic surface and volume sampling method that supports arbitrary crack initiation, propagation, and termination, while avoiding many of the stability problems of traditional mesh-based techniques. We explicitly model advancing crack fronts and associated fracture surfaces embedded in the simulation volume. When cutting through the material, crack fronts directly affect the coupling between simulation nodes, requiring a dynamic adaptation of the nodal shape functions. We show how local visibility tests and dynamic caching lead to an efficient implementation of these effects based on point collocation. Complex fracture patterns of interacting and branching cracks are handled using a small set of topological operations for splitting, merging, and terminating crack fronts. This allows continuous propagation of cracks with highly detailed fracture surfaces, independent of the spatial resolution of the simulation nodes, and provides effective mechanisms for controlling fracture paths. We demonstrate our method for a wide range of materials, from stiff elastic to highly plastic objects that exhibit brittle and/or ductile fracture.


eurographics | 2004

Post-processing of scanned 3D surface data

Tim Weyrich; Mark Pauly; Richard Keiser; Simon Heinzle; Sascha Scandella; Markus H. Gross

3D shape acquisition has become a major tool for creating digital 3D surface data in a variety of application elds. Despite the steady increase in accuracy, most available scanning techniques cause severe scanning artifacts such as noise, outliers, holes, or ghost geometry. To apply sophisticated modeling operations on these data sets, substantial post-processing is usually required. In this paper, we address a variety of scanning artifacts that are created by common optical scanners and provide a comprehensive set of user-guided tools to process corrupted data sets. These include an eraser tool, low-pass lter s for noise removal, a set of outlier detection methods, and various up-sampling and hole- lling tools. These techniques can be applied early in the content creation pipeline. Therefore, all our tools are implemented to operate directly on the acquired point cloud. We also emphasize the need for extensive user control and an ef cient visual feedback loop. The effectiveness of our scan cleaning tools is demonstrated on various models acquired with commercial laser-range scanners and low-cost structured light scanners.


eurographics | 2005

A unified Lagrangian approach to solid-fluid animation

Richard Keiser; Bart Adams; Dominique Gasser; Paolo Bazzi; Philip Dutré; Markus H. Gross

We present a framework for physics-based animation of deforming solids and fluids. By merging the equations of solid mechanics with the Navier-Stokes equations using a particle-based Lagrangian approach, we are able to employ a unified method to animate both solids and fluids as well as phase transitions. Central to our framework is a hybrid implicit-explicit surface generation approach, which is capable of representing fine surface detail as well as handling topological changes in interactive time for moderately complex objects. The generated surface is represented by oriented point samples, which adapt to the new position of the particles by minimizing the potential energy of the surface subject to geometric constraints. We illustrate our algorithm on a variety of examples ranging from stiff elastic and plasto-elastic materials to fluids with variable viscosity.


Computer Graphics Forum | 2010

Articulated Billboards for Video-based Rendering

Marcel Germann; Alexander Hornung; Richard Keiser; Remo Ziegler; Stephan Würmlin; Markus H. Gross

We present a novel representation and rendering method for free‐viewpoint video of human characters based on multiple input video streams. The basic idea is to approximate the articulated 3D shape of the human body using a subdivision into textured billboards along the skeleton structure. Billboards are clustered to fans such that each skeleton bone contains one billboard per source camera. We call this representation articulated billboards.


Computer Graphics Forum | 2005

Efficient Raytracing of Deforming Point‐Sampled Surfaces

Bart Adams; Richard Keiser; Mark Pauly; Leonidas J. Guibas; Markus H. Gross; Philip Dutré

We present efficient data structures and caching schemes to accelerate ray-surface intersections for deforming point-sampled surfaces. By exploiting spatial and temporal coherence of the deformation during the animation, we are able to improve rendering performance by a factor of two to three compared to existing techniques. Starting from a tight bounding sphere hierarchy for the undeformed object, we use a lazy updating scheme to adapt the hierarchy to the deformed surface in each animation step. In addition, we achieve a significant speedup for ray-surface intersections by caching per-ray intersection points. We also present a technique for rendering sharp edges and corners in point-sampled models by introducing a novel surface clipping algorithm.

Collaboration


Dive into the Richard Keiser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Pauly

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bart Adams

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip Dutré

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge