Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard L. Coulter is active.

Publication


Featured researches published by Richard L. Coulter.


Boundary-Layer Meteorology | 2002

Nocturnal Low-Level Jet Characteristics Over Kansas During Cases-99

Robert M. Banta; Rob K. Newsom; Julie K. Lundquist; Y. L. Pichugina; Richard L. Coulter; Larry Mahrt

Characteristics and evolution of the low-level jet (LLJ)over southeastern Kansas were investigated during the 1999 Cooperative Surface-AtmosphereExchange Study (CASES–99) field campaign with an instrument complement consisting of ahigh-resolution Doppler lidar (HRDL), a 60 m instrumented tower, and a triangle of Dopplermini-sodar/profiler combinations. Using this collection of instrumentation we determined thespeed UX, height ZX and direction DX of the LLJ. We investigate here the frequencyof occurrence, the spatial distribution, and the evolution through the night, of these LLJcharacteristics. The jet of interest in this study was that which generates the shear and turbulencebelow the jet and near the surface. This was represented by the lowest wind maximum.We found that this wind maximum, which was most often between 7 and 10 m s‐1,was often at or just below 100 m above ground level as measured by HRDL at the CASEScentral site. Over the 60 km profiler–sodararray, the topography varied by ∼100 m. The wind speed anddirection were relatively constant over this distance (with some tendency for strongerwinds at the highest site), but ZX was more variable. ZX was occasionally about equal at allthree sites, indicating that the jet was following the terrain, but more often it seemed to berelatively level, i.e., at about the same height above sea level. ZX was also more variable thanUX in the behaviour of the LLJ with time through the night, and on some nights


Boundary-Layer Meteorology | 2004

Atmospheric disturbances that generate intermittent turbulence in nocturnal boundary layers

Jielun Sun; Donald H. Lenschow; Sean P. Burns; Robert M. Banta; Rob K. Newsom; Richard L. Coulter; Stephen J. Frasier; Turker Ince; Carmen J. Nappo; Ben B. Balsley; Michael L. Jensen; Larry Mahrt; David R. Miller; Brian T. Skelly

UX wasremarkably steady. Examples of two nights with strong turbulence below jet level were furtherinvestigated using the 60 m tower at the main CASES–99 site. Evidence of TKE increasing withheight and downward turbulent transport of TKE indicates that turbulence was primarilygenerated aloft and mixed downward, supporting the upside–down boundary layer notion in thestable boundary layer.


Boundary-Layer Meteorology | 2002

Intermittent Turbulence Associated with a Density Current Passage in the Stable Boundary Layer

Jielun Sun; Sean P. Burns; Donald H. Lenschow; Robert M. Banta; Rob K. Newsom; Richard L. Coulter; Stephen J. Frasier; Turker Ince; Carmen J. Nappo; Joan Cuxart; William Blumen; Xuhui Lee; Xinzhang Hu

Using the unprecedented observational facilities deployed duringthe 1999 Cooperative Atmosphere-Surface Exchange Study (CASES-99),we found three distinct turbulent events on the night of 18October 1999. These events resulted from a density current,solitary wave, and internal gravity wave, respectively. Our studyfocuses on the turbulence intermittency generated by the solitarywave and internal gravity wave, and intermittent turbulenceepisodes associated with pressure change and wind direction shiftsadjacent to the ground. Both the solitary and internal gravitywaves propagated horizontally and downward. During the passage ofboth the solitary and internal gravity waves, local thermal andshear instabilities were generated as cold air was pushed abovewarm air and wind gusts reached to the ground. These thermal andshear instabilities triggered turbulent mixing events. Inaddition, strong vertical acceleration associated with thesolitary wave led to large non-hydrostatic pressure perturbationsthat were positively correlated with temperature. The directionaldifference between the propagation of the internal gravity waveand the ambient flow led to lateral rolls. These episodic studiesdemonstrate that non-local disturbances are responsible for localthermal and shear instabilities, leading to intermittentturbulence in nocturnal boundary layers. The origin of thesenon-local disturbances needs to be understood to improve mesoscalenumerical model performance.


Journal of The Air & Waste Management Association | 1999

Particulate Air Pollution in Mexico City: A Collaborative Research Project

Sylvia A. Edgerton; Xindi Bian; J. C. Doran; Jerome D. Fast; John M. Hubbe; E. L. Malone; William J. Shaw; C. D. Whiteman; Shiyuan Zhong; J. L. Arriaga; E. Ortiz; Ma. Esther Ruiz; G. Sosa; Elizabeth Vega; T. Limón; F. Guzman; John A. Archuleta; J. E. Bossert; S. M. Elliot; J. T. Lee; Laurie A. McNair; Judith C. Chow; John G. Watson; Richard L. Coulter; Jeffrey S. Gaffney; Nancy A. Marley; William D. Neff; R. Petty

Using the unprecedented observational capabilities deployed duringthe Cooperative Atmosphere-Surface Exchange Study-99 (CASES-99),we found three distinct turbulence events on the night of 18October 1999, each of which was associated with differentphenomena: a density current, solitary waves, and downwardpropagating waves from a low-level jet. In this study, we focus onthe first event, the density current and its associatedintermittent turbulence. As the cold density current propagatedthrough the CASES-99 site, eddy motions in the upper part of thedensity current led to periodic overturning of the stratifiedflow, local thermal instability and a downward diffusion ofturbulent mixing. Propagation of the density current induced asecondary circulation. The descending motion following the head ofthe density current resulted in strong stratification, a sharpreduction in the turbulence, and a sudden increase in the windspeed. As the wind surge propagated toward the surface, shearinstability generated upward diffusion of turbulent mixing. Wedemonstrate in detail that the height and sequence of the localthermal and shear instabilities associated with the dynamics ofthe density current are responsible for the apparent intermittentturbulence.


Journal of Applied Meteorology | 2005

Climatology of the Low-Level Jet at the Southern Great Plains Atmospheric Boundary Layer Experiments Site

Jie Song; Ke Liao; Richard L. Coulter; Barry M. Lesht

PM10, PM25, precursor gas, and upper-air meteorological measurements were taken in Mexico City, Mexico, from February 23 to March 22, 1997, to understand concentrations and chemical compositions of the citys particulate matter (PM). Average 24-hr PM10 concentrations over the period of study at the core sites in the city were 75 H g/m3. The 24-hr standard of 150 μ g/m3 was exceeded for seven samples taken during the study period; the maximum 24-hr concentration measured was 542 μ g/m3. Nearly half of the PM10 was composed of fugitive dust from roadways, construction, and bare land. About 50% of the PM10 consisted of PM2.5, with higher percentages during the morning hours. Organic and black carbon constituted up to half of the PM2.5. PM concentrations were highest during the early morning and after sunset, when the mixed layers were shallow. Meteorological measurements taken during the field campaign show that on most days air was transported out of the Mexico City basin during the afternoon with little day-to-day carryover.


Bulletin of the American Meteorological Society | 2000

Land–Atmosphere Interaction Research, Early Results, and Opportunities in the Walnut River Watershed in Southeast Kansas: CASES and ABLE

Margaret A. LeMone; Robert L. Grossman; Richard L. Coulter; Marvin L. Wesley; Gerard E. Klazura; Gregory S. Poulos; William Blumen; Julie K. Lundquist; Richard H. Cuenca; Shaun F. Kelly; Edward A. Brandes; Steven P. Oncley; Robert T. McMillen; Bruce B. Hicks

A unique dataset obtained with combinations of minisodars and 915-MHz wind profilers at the Atmospheric Boundary Layer Experiments (ABLE) facility in Kansas was used to examine the detailed characteristics of the nocturnal low-level jet (LLJ). In contrast to instruments used in earlier studies, the ABLE instruments provide hourly, high-resolution vertical profiles of wind velocity from just above the surface to approximately 2 km above ground level (AGL). Furthermore, the 6-yr span of the dataset allowed the examination of interannual variability in jet properties with improved statistical reliability. It was found that LLJs occurred during 63% of the nighttime periods sampled. Although most of the observed jets were southerly, a substantial fraction (28%) was northerly. Wind maxima occurred most frequently at 200–400 m AGL, though some jets were found as low as 50 m, and the strongest jets tended to occur above 300 m. Comparison of LLJ heights at three locations within the ABLE domain and at one location outside the domain suggests that the jet is equipotential rather than terrain following. The occurrence of southerly LLJ varied annually in a way that suggests a connection between the tendency for jet formation and the large-scale circulation patterns associated with El Nino and La Nina, as well as with the Pacific decadal oscillation. Frequent and strong southerly jets that transport moisture downstream do not necessarily lead to more precipitation locally, however.


Bulletin of the American Meteorological Society | 1998

The IMADA-AVER Boundary Layer Experiment in the Mexico City Area

J. C. Doran; Scott Abbott; John A. Archuleta; Xindi Bian; Judith C. Chow; Richard L. Coulter; S. F. J. de Wekker; S. Edgerton; S. Elliott; A. Fernandez; Jerome D. Fast; John M. Hubbe; C. W. King; D. Langley; J. Leach; J. T. Lee; Timothy Martin; D. Martinez; J. L. Martinez; G. Mercado; V. Mora; M. Mulhearn; J. L. Pena; R. Petty; W. Porch; C. C. Russell; R. Salas; J.D. Shannon; William J. Shaw; G. Sosa

Abstract This paper describes the development of the Cooperative Atmosphere Surface Exchange Study (CASES), its synergism with the development of the Atmosphere Boundary Layer Experiments (ABLE) and related efforts, CASES field programs, some early results, and future plans and opportunities. CASES is a grassroots multidisciplinary effort to study the interaction of the lower atmosphere with the land surface, the subsurface, and vegetation over timescales ranging from nearly instantaneous to years. CASES scientists developed a consensus that observations should be taken in a watershed between 50 and 100 km across; practical considerations led to an approach combining long—term data collection with episodic intensive field campaigns addressing specific objectives that should always include improvement of the design of the long—term instrumentation. In 1997, long—term measurements were initiated in the Walnut River Watershed east of Wichita, Kansas. Argonne National Laboratory started setting up the ABLE ar...


Journal of Applied Meteorology | 1979

A Comparison of Three Methods for Measuring Mixing-Layer Height

Richard L. Coulter

Abstract A boundary layer field experiment in the Mexico City basin during the period 24 February–22 March 1997 is described. A total of six sites were instrumented. At four of the sites, 915-MHz radar wind profilers were deployed and radiosondes were released five times per day. Two of these sites also had sodars collocated with the profilers. Radiosondes were released twice per day at a fifth site to the south of the basin, and rawinsondes were flown from another location to the northeast of the city three times per day. Mixed layers grew to depths of 2500–3500 m, with a rapid period of growth beginning shortly before noon and lasting for several hours. Significant differences between the mixed-layer temperatures in the basin and outside the basin were observed. Three thermally and topographically driven flow patterns were observed that are consistent with previously hypothesized topographical and thermal forcing mechanisms. Despite these features, the circulation patterns in the basin important for the...


Boundary-Layer Meteorology | 1990

A case study of turbulence in the stable nocturnal boundary layer

Richard L. Coulter

Abstract Temperature profile, lidar and sodar results for determination of mixing-layer heights during October 1977 are compared. While the overall agreement was good, systematic differences do appear, particularly in early morning and late afternoon between lidar and sodar results, when the lidar values are consistently higher than the sodar. Temperature profile values are consistently lower than the other two methods. These differences are due to the slightly different behavior of the sensed variables near the capping inversion. Aerosols and particulates mix to larger heights than the top of the adiabatic temperature profile, while temperature fluctuations exhibit an increase at a height above the top of the adiabatic temperature profile but below the maximum height of particulate mixing.


Journal of Hydrometeorology | 2007

Influence of Land Cover and Soil Moisture on the Horizontal Distribution of Sensible and Latent Heat Fluxes in Southeast Kansas during IHOP_2002 and CASES-97

Margaret A. LeMone; Fei Chen; Joseph G. Alfieri; Mukul Tewari; Bart Geerts; Qun Miao; Robert L. Grossman; Richard L. Coulter

Velocity and signal intensity data during stable conditions in the nocturnal boundary layer (NBL) were obtained with a minisodar on two consecutive nights with similar mean conditions. There was little turbulence activity during the first night, but during the second night, continuous background Kelvin-Helmholtz waves and instabilities having a 2-min period grew and penetrated above the mean NBL height at approximately 60-min intervals. Enhanced ozone concentrations at the surface occurred during the active periods even though most mean meteorological parameters were unchanged. Vertical profiles of vertical velocity standard deviation, dissipation rate, and temperature variance destruction rate in the NBL were measured and analyzed separately according to levels of turbulence activity. Well-defined differences between inactive and active periods of a factor of two to four were found for each parameter. The temperature structure parameter flux was large and in opposite directions in the upper and lower part of the NBL during active periods of turbulence, but small during other periods.

Collaboration


Dive into the Richard L. Coulter's collaboration.

Top Co-Authors

Avatar

Timothy Martin

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Paytsar Muradyan

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mikhail S. Pekour

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

William J. Shaw

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jerome D. Fast

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Annette Koontz

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Carl M. Berkowitz

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

David R. Cook

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

John M. Hubbe

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

M. L. Wesely

Argonne National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge