Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard L. Gallo is active.

Publication


Featured researches published by Richard L. Gallo.


The Journal of Clinical Endocrinology and Metabolism | 2011

The 2011 Report on Dietary Reference Intakes for Calcium and Vitamin D from the Institute of Medicine: What Clinicians Need to Know

A. Catharine Ross; JoAnn E. Manson; Steven A. Abrams; John F. Aloia; Patsy M. Brannon; Steven K. Clinton; Ramon Durazo-Arvizu; J. Christopher Gallagher; Richard L. Gallo; Glenville Jones; Christopher S. Kovacs; Susan T. Mayne; Clifford J. Rosen; Sue A. Shapses

This article summarizes the new 2011 report on dietary requirements for calcium and vitamin D from the Institute of Medicine (IOM). An IOM Committee charged with determining the population needs for these nutrients in North America conducted a comprehensive review of the evidence for both skeletal and extraskeletal outcomes. The Committee concluded that available scientific evidence supports a key role of calcium and vitamin D in skeletal health, consistent with a cause-and-effect relationship and providing a sound basis for determination of intake requirements. For extraskeletal outcomes, including cancer, cardiovascular disease, diabetes, and autoimmune disorders, the evidence was inconsistent, inconclusive as to causality, and insufficient to inform nutritional requirements. Randomized clinical trial evidence for extraskeletal outcomes was limited and generally uninformative. Based on bone health, Recommended Dietary Allowances (RDAs; covering requirements of ≥97.5% of the population) for calcium range from 700 to 1300 mg/d for life-stage groups at least 1 yr of age. For vitamin D, RDAs of 600 IU/d for ages 1–70 yr and 800 IU/d for ages 71 yr and older, corresponding to a serum 25-hydroxyvitamin D level of at least 20 ng/ml (50 nmol/liter), meet the requirements of at least 97.5% of the population. RDAs for vitamin D were derived based on conditions of minimal sun exposure due to wide variability in vitamin D synthesis from ultraviolet light and the risks of skin cancer. Higher values were not consistently associated with greater benefit, and for some outcomes U-shaped associations were observed, with risks at both low and high levels. The Committee concluded that the prevalence of vitamin D inadequacy in North America has been overestimated. Urgent research and clinical priorities were identified, including reassessment of laboratory ranges for 25-hydroxyvitamin D, to avoid problems of both undertreatment and overtreatment.


Nature | 2001

Innate antimicrobial peptide protects the skin from invasive bacterial infection

Victor Nizet; Takaaki Ohtake; Xavier Lauth; Janet M. Trowbridge; Jennifer A. Rudisill; Robert A. Dorschner; Vasumati Pestonjamasp; Joseph S Piraino; Kenneth Huttner; Richard L. Gallo

In mammals, several gene families encode peptides with antibacterial activity, such as the β-defensins and cathelicidins. These peptides are expressed on epithelial surfaces and in neutrophils, and have been proposed to provide a first line of defence against infection by acting as ‘natural antibiotics’. The protective effect of antimicrobial peptides is brought into question by observations that several of these peptides are easily inactivated and have diverse cellular effects that are distinct from antimicrobial activity demonstrated in vitro. To investigate the function of a specific antimicrobial peptide in a mouse model of cutaneous infection, we applied a combined mammalian and bacterial genetic approach to the cathelicidin antimicrobial gene family. The mature human (LL-37) and mouse (CRAMP) peptides are encoded by similar genes (CAMP and Cnlp, respectively), and have similar α-helical structures, spectra of antimicrobial activity and tissue distribution. Here we show that cathelicidins are an important native component of innate host defence in mice and provide protection against necrotic skin infection caused by Group A Streptococcus (GAS).


Trends in Immunology | 2009

AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense

Yuping Lai; Richard L. Gallo

Antimicrobial peptides (AMPs) are widely expressed and rapidly induced at epithelial surfaces to repel assault from diverse infectious agents including bacteria, viruses, fungi and parasites. Much information suggests that AMPs act by mechanisms that extend beyond their capacity to serve as gene-encoded antibiotics. For example, some AMPs alter the properties of the mammalian membrane or interact with its receptors to influence diverse cellular processes including cytokine release, chemotaxis, antigen presentation, angiogenesis and wound healing. These functions complement their antimicrobial action and favor resolution of infection and repair of damaged epithelia. Opposing this, some microbes have evolved mechanisms to inactivate or avoid AMPs and subsequently become pathogens. Thus, AMPs are multifunctional molecules that have a central role in infection and inflammation.


Journal of Clinical Investigation | 2003

An angiogenic role for the human peptide antibiotic LL-37/hCAP-18

Rembert Koczulla; Georges von Degenfeld; Christian Kupatt; Florian Krötz; Stefan Zahler; Torsten Gloe; Katja Issbrücker; Pia Unterberger; Mohamed Zaiou; Corinna Lebherz; Alexander Karl; Philip Raake; Achim Pfosser; Peter Boekstegers; Ulrich Welsch; Pieter S. Hiemstra; Claus Vogelmeier; Richard L. Gallo; Matthias Clauss; Robert Bals

Antimicrobial peptides are effector molecules of the innate immune system and contribute to host defense and regulation of inflammation. The human cathelicidin antimicrobial peptide LL-37/hCAP-18 is expressed in leukocytes and epithelial cells and secreted into wound and airway surface fluid. Here we show that LL-37 induces angiogenesis mediated by formyl peptide receptor-like 1 expressed on endothelial cells. Application of LL-37 resulted in neovascularization in the chorioallantoic membrane assay and in a rabbit model of hind-limb ischemia. The peptide directly activates endothelial cells, resulting in increased proliferation and formation of vessel-like structures in cultivated endothelial cells. Decreased vascularization during wound repair in mice deficient for CRAMP, the murine homologue of LL-37/hCAP-18, shows that cathelicidin-mediated angiogenesis is important for cutaneous wound neovascularization in vivo. Taken together, these findings demonstrate that LL-37/hCAP-18 is a multifunctional antimicrobial peptide with a central role in innate immunity by linking host defense and inflammation with angiogenesis and arteriogenesis.


Journal of Clinical Investigation | 2007

Injury enhances TLR2 function and antimicrobial peptide expression through a vitamin D–dependent mechanism

Jürgen Schauber; Robert A. Dorschner; Alvin Coda; Amanda S. Büchau; Philip T. Liu; David Kiken; Yolanda R. Helfrich; Sewon Kang; Hashem Elalieh; Andreas Steinmeyer; Ulrich Zügel; Daniel D. Bikle; Robert L. Modlin; Richard L. Gallo

An essential element of the innate immune response to injury is the capacity to recognize microbial invasion and stimulate production of antimicrobial peptides. We investigated how this process is controlled in the epidermis. Keratinocytes surrounding a wound increased expression of the genes coding for the microbial pattern recognition receptors CD14 and TLR2, complementing an increase in cathelicidin antimicrobial peptide expression. These genes were induced by 1,25(OH)2 vitamin D3 (1,25D3; its active form), suggesting a role for vitamin D3 in this process. How 1,25D3 could participate in the injury response was explained by findings that the levels of CYP27B1, which converts 25OH vitamin D3 (25D3) to active 1,25D3, were increased in wounds and induced in keratinocytes in response to TGF-beta1. Blocking the vitamin D receptor, inhibiting CYP27B1, or limiting 25D3 availability prevented TGF-beta1 from inducing cathelicidin, CD14, or TLR2 in human keratinocytes, while CYP27B1-deficient mice failed to increase CD14 expression following wounding. The functional consequence of these observations was confirmed by demonstrating that 1,25D3 enabled keratinocytes to recognize microbial components through TLR2 and respond by cathelicidin production. Thus, we demonstrate what we believe to be a previously unexpected role for vitamin D3 in innate immunity, enabling keratinocytes to recognize and respond to microbes and to protect wounds against infection.


Journal of Clinical Investigation | 1996

Rapamycin inhibits vascular smooth muscle cell migration.

Michael Poon; Steven O. Marx; Richard L. Gallo; Juan J. Badimon; Mark B. Taubman; Andrew R. Marks

Abnormal vascular smooth muscle cell (SMC) proliferation and migration contribute to the development of restenosis after percutaneous transluminal coronary angioplasty and accelerated arteriopathy after cardiac transplantation. Previously, we reported that the macrolide antibiotic rapamycin, but not the related compound FK506, inhibits both human and rat aortic SMC proliferation in vitro by inhibiting cell cycle-dependent kinases and delaying phosphorylation of retinoblastoma protein (Marx, S.O., T. Jayaraman, L.O. Go, and A.R. Marks. 1995. Circ. Res. 362:801). In the present study the effects of rapamycin on SMC migration were assayed in vitro using a modified Boyden chamber and in vivo using a porcine aortic SMC explant model. Pretreatment with rapamycin (2 ng/ml) for 48 h inhibited PDGF-induced migration (PDGF BB homodimer; 20 ng/ml) in cultured rat and human SMC (n = 10; P < 0.0001), whereas FK506 had no significant effect on migration. Rapamycin administered orally (1 mg/kg per d for 7 d) significantly inhibited porcine aortic SMC migration compared with control (n = 15; P < 0.0001). Thus, in addition to being a potent immunosuppressant and antiproliferative, rapamycin also inhibits SMC migration.


Circulation | 1999

Inhibition of Intimal Thickening After Balloon Angioplasty in Porcine Coronary Arteries by Targeting Regulators of the Cell Cycle

Richard L. Gallo; Adrian Padurean; Thottala Jayaraman; Steven O. Marx; Mercè Roqué; Steven J. Adelman; James H. Chesebro; John T. Fallon; Valentin Fuster; Andrew R. Marks; Juan J. Badimon

BACKGROUND Although percutaneous transluminal coronary angioplasty (PTCA) is a highly effective procedure to reduce the severity of stenotic coronary atherosclerotic disease, its long-term success is significantly limited by the high rate of restenosis. Several cellular and molecular mechanisms have been implicated in the development of restenosis post-PTCA, including vascular smooth muscle cell (VSMC) activation, migration, and proliferation. Recently, our group demonstrated that rapamycin, an immunosuppressant agent with antiproliferative properties, inhibits both rat and human VSMC proliferation and migration in vitro. In the present study, we investigated (1) whether rapamycin administration could reduce neointimal thickening in a porcine model of restenosis post-PTCA and (2) the mechanism by which rapamycin inhibits VSMCs in vivo. METHODS AND RESULTS PTCA was performed on a porcine model at a balloon/vessel ratio of 1.7+/-0.2. Coronary arteries were analyzed for neointimal formation 4 weeks after PTCA. Intramuscular administration of rapamycin started 3 days before PTCA at a dose of 0.5 mg/kg and continued for 14 days at a dose of 0.25 mg/kg. Cyclin-dependent kinase inhibitor (CDKI) p27(kip1) protein levels and pRb phosphorylation within the vessel wall were determined by immunoblot analysis. PTCA in the control group was associated with the development of significant luminal stenosis 4 weeks after the coronary intervention. Luminal narrowing was a consequence of significant neointimal formation in the injured areas. Rapamycin administration was associated with a significant inhibition in coronary stenosis (63+/-3.4% versus 36+/-4.5%; P<0.001), resulting in a concomitant increase in luminal area (1.74+/-0.1 mm2 versus 3. 3+/-0.4 mm2; P<0.001) after PTCA. Inhibition of proliferation was associated with markedly increased concentrations of the p27(kip1) levels and inhibition of pRb phosphorylation within the vessel wall. CONCLUSIONS Rapamycin administration significantly reduced the arterial proliferative response after PTCA in the pig by increasing the level of the CDKI p27(kip1) and inhibition of the pRb phosphorylation within the vessel wall. Therefore, pharmacological interventions that elevate CDKI in the vessel wall and target cyclin-dependent kinase activity may have a therapeutic role in the treatment of restenosis after angioplasty in humans.


Journal of Clinical Investigation | 2005

HIF-1α expression regulates the bactericidal capacity of phagocytes

Carole Peyssonnaux; Vivekanand Datta; Thorsten Cramer; Andrew Doedens; Emmanuel A. Theodorakis; Richard L. Gallo; Nancy Hurtado-Ziola; Victor Nizet; Randall S. Johnson

Hypoxia is a characteristic feature of the tissue microenvironment during bacterial infection. Here we report on our use of conditional gene targeting to examine the contribution of hypoxia-inducible factor 1, alpha subunit (HIF-1alpha) to myeloid cell innate immune function. HIF-1alpha was induced by bacterial infection, even under normoxia, and regulated the production of key immune effector molecules, including granule proteases, antimicrobial peptides, nitric oxide, and TNF-alpha. Mice lacking HIF-1alpha in their myeloid cell lineage showed decreased bactericidal activity and failed to restrict systemic spread of infection from an initial tissue focus. Conversely, activation of the HIF-1alpha pathway through deletion of von Hippel-Lindau tumor-suppressor protein or pharmacologic inducers supported myeloid cell production of defense factors and improved bactericidal capacity. HIF-1alpha control of myeloid cell activity in infected tissues could represent a novel therapeutic target for enhancing host defense.


The FASEB Journal | 2006

Glycosaminoglycans and their proteoglycans: host-associated molecular patterns for initiation and modulation of inflammation.

Kristen R. Taylor; Richard L. Gallo

Glycosaminoglycans, linear carbohydrates such as heparan sulfate and hyaluronan, participate in a variety of biological processes including cell‐matrix interactions and activation of chemokines, enzymes and growth factors. This review will discuss progress in immunology and the science of wound repair that has revealed the importance of glycosaminoglycans, and their proteoglycans, in the inflammatory process. Heparan sulfate enables growth factor function and modifies enzyme/inhibitor functions, such as antithrombin III and heparin cofactor II. Heparan sulfate also interacts with cytokines/chemokines and participates in leukocyte selectin binding to promote the recruitment of leukocytes. Chondroitin sulfate/ dermatan sulfate regulates growth factor activity and is an alternate modulator of heparin cofactor II. In addition, dermatan sulfate induces ICAM‐1 expression on endothelial cells and also recruits leukocytes via selectin interactions. Hyaluronan alternatively participates in leukocyte recruitment via interaction with CD44, while activating various inflammatory cells, such as macrophages, through CD44‐dependent signaling. Hyaluronan also signals through Toll‐like receptor 4 to induce dendritic cell maturation and promote cytokine release by dendritic cells and endothelial cells. Taken together, the field of glycosaminoglycan biology provides new clues and explanations of the process of inflammation and suggests new therapeutic approaches to human disease.—Taylor, K. R., Gallo, R. L. Glycosaminoglycans and their proteoglycans: host‐associated molecular patterns for initiation and modulation of inflammation. FASEB J. 20, 9–22 (2006)


Nature Medicine | 2007

Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea

Kenshi Yamasaki; Anna Di Nardo; Antonella Bardan; Masamoto Murakami; Takaaki Ohtake; Alvin Coda; Robert A. Dorschner; Chrystelle Bonnart; Pascal Descargues; Alain Hovnanian; Vera B. Morhenn; Richard L. Gallo

Acne rosacea is an inflammatory skin disease that affects 3% of the US population over 30 years of age and is characterized by erythema, papulopustules and telangiectasia. The etiology of this disorder is unknown, although symptoms are exacerbated by factors that trigger innate immune responses, such as the release of cathelicidin antimicrobial peptides. Here we show that individuals with rosacea express abnormally high levels of cathelicidin in their facial skin and that the proteolytically processed forms of cathelicidin peptides found in rosacea are different from those present in normal individuals. These cathelicidin peptides are a result of a post-translational processing abnormality associated with an increase in stratum corneum tryptic enzyme (SCTE) in the epidermis. In mice, injection of the cathelicidin peptides found in rosacea, addition of SCTE, and increasing protease activity by targeted deletion of the serine protease inhibitor gene Spink5 each increases inflammation in mouse skin. The role of cathelicidin in enabling SCTE-mediated inflammation is verified in mice with a targeted deletion of Camp, the gene encoding cathelicidin. These findings confirm the role of cathelicidin in skin inflammatory responses and suggest an explanation for the pathogenesis of rosacea by demonstrating that an exacerbated innate immune response can reproduce elements of this disease.

Collaboration


Dive into the Richard L. Gallo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tissa Hata

University of California

View shared research outputs
Top Co-Authors

Avatar

Victor Nizet

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Di Nardo

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge