Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Teruaki Nakatsuji is active.

Publication


Featured researches published by Teruaki Nakatsuji.


Nature Medicine | 2009

Commensal bacteria regulate Toll-like receptor 3― dependent inflammation after skin injury

Yuping Lai; Anna Di Nardo; Teruaki Nakatsuji; Anke Leichtle; Yan Yang; Anna L. Cogen; Zi Rong Wu; Lora V. Hooper; Richard R. Schmidt; Sonja von Aulock; Katherine A. Radek; Chun-Ming Huang; Allen F. Ryan; Richard L. Gallo

The normal microflora of the skin includes staphylococcal species that will induce inflammation when present below the dermis but are tolerated on the epidermal surface without initiating inflammation. Here we reveal a previously unknown mechanism by which a product of staphylococci inhibits skin inflammation. This inhibition is mediated by staphylococcal lipoteichoic acid (LTA) and acts selectively on keratinocytes triggered through Toll-like receptor 3(TLR3). We show that TLR3 activation is required for normal inflammation after injury and that keratinocytes require TLR3 to respond to RNA from damaged cells with the release of inflammatory cytokines. Staphylococcal LTA inhibits both inflammatory cytokine release from keratinocytes and inflammation triggered by injury through a TLR2-dependent mechanism. To our knowledge, these findings show for the first time that the skin epithelium requires TLR3 for normal inflammation after wounding and that the microflora can modulate specific cutaneous inflammatory responses.


Journal of Investigative Dermatology | 2012

Antimicrobial Peptides: Old Molecules with New Ideas

Teruaki Nakatsuji; Richard L. Gallo

Almost 90 years have passed since Alexander Fleming discovered the antimicrobial activity of lysozyme, the first natural antibiotic isolated from our body. Since then, various types of molecules with antibiotic activity have been isolated from animals, insects, plants and bacteria, and their use has revolutionised clinical medicine. So far, more than 1200 types of peptides with antimicrobial activity have been isolated from various cells and tissues, and it appears all living organisms employ these antimicrobial peptides (AMPs) in their host defense. In the last decade, innate AMPs produced by mammals have been shown to be essential for the protection of skin and other organs. Their importance is due to their pleiotrophic functions to not only kill microbes but also control host physiological functions such as inflammation, angiogenesis and wound healing. Recent advances in our understanding of the function of AMPs have associated their altered production with various human diseases such as psoriasis, atopic dermatitis and rosacea. In this review, we summarize the history of AMP biology and provide an overview of recent research progress in this field.


Nature Medicine | 2012

Ultraviolet radiation damages self noncoding RNA and is detected by TLR3

Jamie J. Bernard; Christopher Cowing-Zitron; Teruaki Nakatsuji; Beda Muehleisen; Jun Muto; Andrew W. Borkowski; Laisel Martinez; Eric L. Greidinger; Benjamin D. Yu; Richard L. Gallo

Exposure to ultraviolet B (UVB) radiation from the sun can result in sunburn, premature aging and carcinogenesis, but the mechanism responsible for acute inflammation of the skin is not well understood. Here we show that RNA is released from keratinocytes after UVB exposure and that this stimulates production of the inflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) from nonirradiated keratinocytes and peripheral blood mononuclear cells (PBMCs). Whole-transcriptome sequencing revealed that UVB irradiation of keratinocytes induced alterations in the double-stranded domains of some noncoding RNAs. We found that this UVB-damaged RNA was sufficient to induce cytokine production from nonirradiated cells, as UVB irradiation of a purified noncoding RNA (U1 RNA) reproduced the same response as the one we observed to UVB-damaged keratinocytes. The responses to both UVB-damaged self-RNAs and UVB-damaged keratinocytes were dependent on Toll-like receptor 3 (TLR3) and Toll-like receptor adaptor molecule 1 (TRIF). In response to UVB exposure, Tlr3−/− mice did not upregulate TNF-α in the skin. Moreover, TLR3 was also necessary for UVB-radiation–induced immune suppression. These findings establish that UVB damage is detected by TLR3 and that self-RNA is a damage-associated molecular pattern that serves as an endogenous signal of solar injury.


Journal of Investigative Dermatology | 2011

Microbial Symbiosis with the Innate Immune Defense System of the Skin

Richard L. Gallo; Teruaki Nakatsuji

Skin protects itself against infection through a variety of mechanisms. Antimicrobial peptides (AMPs) are major contributors to cutaneous innate immunity, and this system, combined with the unique ionic, lipid and physical barrier of the epidermis is the first line defense against invading pathogens. However, recent studies have revealed that our skin’s innate immune system is not solely of human origin. Staphylococcus epidermidis, a major constituent of the normal microflora on healthy human skin, acts as a barrier against colonization of potentially pathogenic microbes and against overgrowth of already present opportunistic pathogens. Our resident commensal microbes produce their own AMPs, act to enhance the normal production of AMPs by keratinocytes, and are beneficial to maintaining inflammatory homeostasis by suppressing excess cytokine release after minor epidermal injury. These observations indicate that the normal human skin microflora protects skin via various modes of action, a conclusion supported by many lines of evidence associating diseases such as acne, atopic dermatitis, psoriasis and rosacea with an imbalance of the microflora even in the absence of classical infection. This review highlights recent observations on the importance of innate immune systems and the relationship with the normal skin microflora to maintain healthy skin.


Journal of Investigative Dermatology | 2009

Antimicrobial Property of Lauric Acid Against Propionibacterium acnes: Its Therapeutic Potential for Inflammatory Acne Vulgaris

Teruaki Nakatsuji; Mandy C. Kao; Jia-You Fang; Christos C. Zouboulis; Liangfang Zhang; Richard L. Gallo; Chun-Ming Huang

The strong bactericidal properties of lauric acid (C12:0), a middle chain-free fatty acid commonly found in natural products, have been shown in a number of studies. However, it has not been demonstrated whether lauric acid can be used for acne treatment as a natural antibiotic against Propionibacterium acnes (P. acnes), which promotes follicular inflammation (inflammatory acne). This study evaluated the antimicrobial property of lauric acid against P. acnes both in vitro and in vivo. Incubation of the skin bacteria P. acnes, Staphylococcus aureus (S. aureus), and Staphylococcus epidermidis (S. epidermidis) with lauric acid yielded minimal inhibitory concentration (MIC) values against the bacterial growth over 15 times lower than those of benzoyl peroxide (BPO). The lower MIC values of lauric acid indicate stronger antimicrobial properties than that of BPO. The detected values of half maximal effective concentration (EC(50)) of lauric acid on P. acnes, S. aureus, and S. epidermidis growth indicate that P. acnes is the most sensitive to lauric acid among these bacteria. In addition, lauric acid did not induce cytotoxicity to human sebocytes. Notably, both intradermal injection and epicutaneous application of lauric acid effectively decreased the number of P. acnes colonized with mouse ears, thereby relieving P. acnes-induced ear swelling and granulomatous inflammation. The obtained data highlight the potential of using lauric acid as an alternative treatment for antibiotic therapy of acne vulgaris.


Nature Communications | 2013

The microbiome extends to subepidermal compartments of normal skin

Teruaki Nakatsuji; Hsin-I Chiang; Shangi B. Jiang; Harish Nagarajan; Karsten Zengler; Richard L. Gallo

Commensal microbes on the skin surface influence the behavior of cells below the epidermis. We hypothesized that bacteria or their products exist below the surface epithelium and thus permit physical interaction between microbes and dermal cells. Here, to test this hypothesis, we employed multiple independent detection techniques for bacteria including qPCR, Gram-staining, immunofluorescence, and in situ hybridization. Bacteria were consistently detectable within the dermis and dermal adipose of normal human skin. Sequencing of DNA from dermis and dermal adipose tissue identified bacterial 16S rRNA reflective of a diverse and partially distinct microbial community in each skin compartment. These results show the microbiota extends within the dermis, therefore enabling physical contact between bacteria and various cells below the basement membrane. These observations show that normal commensal bacterial communities directly communicate with the host in a tissue previously thought to be sterile.


Journal of Investigative Dermatology | 2011

TLR2 Expression Is Increased in Rosacea and Stimulates Enhanced Serine Protease Production by Keratinocytes

Kenshi Yamasaki; Kimberly Natee Kanada; Daniel T. MacLeod; Andrew W. Borkowski; Shin Morizane; Teruaki Nakatsuji; Anna L. Cogen; Richard L. Gallo

A diverse environment challenges skin to maintain temperature, hydration, and electrolyte balance while also maintaining normal immunological function. Rosacea is a common skin disease that manifests unique inflammatory responses to normal environmental stimuli. We hypothesized that abnormal function of innate immune pattern recognition could explain the enhanced sensitivity of patients with rosacea, and observed that the epidermis of patients with rosacea expressed higher amounts of Toll-like receptor 2 (TLR2) than normal patients. Increased expression of TLR2 was not seen in other inflammatory skin disorders such as atopic dermatitis or psoriasis. Overexpression of TLR2 on keratinocytes, treatment with TLR2 ligands, and analysis of TLR2-deficient mice resulted in a calcium-dependent release of kallikrein 5 from keratinocytes, a critical protease involved in the pathogenesis of rosacea. These observations show that abnormal TLR2 function may explain enhanced inflammatory responses to environmental stimuli and can act as a critical element in the pathogenesis of rosacea.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Molecular cartography of the human skin surface in 3D

Amina Bouslimani; Carla Porto; Christopher M. Rath; Mingxun Wang; Yurong Guo; Antonio Gonzalez; Donna Berg-Lyon; Gail Ackermann; Gitte Julie Moeller Christensen; Teruaki Nakatsuji; Ling-juan Zhang; Andrew W. Borkowski; Michael J. Meehan; Kathleen Dorrestein; Richard L. Gallo; Nuno Bandeira; Rob Knight; Theodore Alexandrov; Pieter C. Dorrestein

Significance The paper describes the implementation of an approach to study the chemical makeup of human skin surface and correlate it to the microbes that live in the skin. We provide the translation of molecular information in high-spatial resolution 3D to understand the body distribution of skin molecules and bacteria. In addition, we use integrative analysis to interpret, at a molecular level, the large scale of data obtained from human skin samples. Correlations between molecules and microbes can be obtained to further gain insights into the chemical milieu in which these different microbial communities live. The human skin is an organ with a surface area of 1.5–2 m2 that provides our interface with the environment. The molecular composition of this organ is derived from host cells, microbiota, and external molecules. The chemical makeup of the skin surface is largely undefined. Here we advance the technologies needed to explore the topographical distribution of skin molecules, using 3D mapping of mass spectrometry data and microbial 16S rRNA amplicon sequences. Our 3D maps reveal that the molecular composition of skin has diverse distributions and that the composition is defined not only by skin cells and microbes but also by our daily routines, including the application of hygiene products. The technological development of these maps lays a foundation for studying the spatial relationships of human skin with hygiene, the microbiota, and environment, with potential for developing predictive models of skin phenotypes tailored to individual health.


Science Translational Medicine | 2017

Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis

Teruaki Nakatsuji; Tiffany H. Chen; Saisindhu Narala; K.A. Chun; Aimee Two; T. Yun; Faiza Shafiq; Paul Kotol; Amina Bouslimani; Alexey V. Melnik; Haythem Latif; Kim Jn; Lockhart A; Artis K; Gloria David; Patricia A. Taylor; Joanne E. Streib; Pieter C. Dorrestein; Grier A; Gill; Karsten Zengler; Tissa Hata; Donald Y.M. Leung; Richard L. Gallo

Commensal skin bacteria produce previously unknown antimicrobial peptides that can inhibit Staphylococcus aureus colonization of atopic dermatitis subjects. Bacterial biological warfare in atopic dermatitis Normal human skin is colonized by a variety of bacteria, which typically do not perturb the host. However, Staphylococcus aureus is known to aggravate symptoms of atopic dermatitis. Nakatsuji et al. report that other strains of Staphylococcus residing on the skin of healthy individuals produce a novel antimicrobial peptide that can inhibit S. aureus growth. Colonization of pigskin or mice with these protective commensals reduced S. aureus replication. Autologous bacterial transplant in a small number of atopic dermatitis patients drastically reduced S. aureus skin burden. This commensal skin transplant is already approved by the U.S. Food and Drug Administration, with a clinical trial underway. The microbiome can promote or disrupt human health by influencing both adaptive and innate immune functions. We tested whether bacteria that normally reside on human skin participate in host defense by killing Staphylococcus aureus, a pathogen commonly found in patients with atopic dermatitis (AD) and an important factor that exacerbates this disease. High-throughput screening for antimicrobial activity against S. aureus was performed on isolates of coagulase-negative Staphylococcus (CoNS) collected from the skin of healthy and AD subjects. CoNS strains with antimicrobial activity were common on the normal population but rare on AD subjects. A low frequency of strains with antimicrobial activity correlated with colonization by S. aureus. The antimicrobial activity was identified as previously unknown antimicrobial peptides (AMPs) produced by CoNS species including Staphylococcus epidermidis and Staphylococcus hominis. These AMPs were strain-specific, highly potent, selectively killed S. aureus, and synergized with the human AMP LL-37. Application of these CoNS strains to mice confirmed their defense function in vivo relative to application of nonactive strains. Strikingly, reintroduction of antimicrobial CoNS strains to human subjects with AD decreased colonization by S. aureus. These findings show how commensal skin bacteria protect against pathogens and demonstrate how dysbiosis of the skin microbiome can lead to disease.


Biomaterials | 2009

The antimicrobial activity of liposomal lauric acids against Propionibacterium acnes

Darren Yang; Dissaya Pornpattananangkul; Teruaki Nakatsuji; Michael Chan; Dennis A. Carson; Chun-Ming Huang; Liangfang Zhang

This study evaluated the antimicrobial activity of lauric acid (LA) and its liposomal derivatives against Propionibacterium acnes (P. acnes), the bacterium that promotes inflammatory acne. First, the antimicrobial study of three free fatty acids (lauric acid, palmitic acid and oleic acid) demonstrated that LA gives the strongest bactericidal activity against P. acnes. However, a setback of using LA as a potential treatment for inflammatory acne is its poor water solubility. Then the LA was incorporated into a liposome formulation to aid its delivery to P. acnes. It was demonstrated that the antimicrobial activity of LA was not only well maintained in its liposomal derivatives but also enhanced at low LA concentration. In addition, the antimicrobial activity of LA-loaded liposomes (LipoLA) mainly depended on the LA loading concentration per single liposomes. Further study found that the LipoLA could fuse with the membranes of P. acnes and release the carried LA directly into the bacterial membranes, thereby killing the bacteria effectively. Since LA is a natural compound that is the main acid in coconut oil and also resides in human breast milk and liposomes have been successfully and widely applied as a drug delivery vehicle in the clinic, the LipoLA developed in this work holds great potential of becoming an innate, safe and effective therapeutic medication for acne vulgaris and other P. acnes associated diseases.

Collaboration


Dive into the Teruaki Nakatsuji's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tissa Hata

University of California

View shared research outputs
Top Co-Authors

Avatar

Aimee Two

University of California

View shared research outputs
Top Co-Authors

Avatar

K.A. Chun

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge