Richard P. Hugtenburg
Swansea University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Richard P. Hugtenburg.
Physics in Medicine and Biology | 2010
Daniel Kirby; Stuart Green; Hugo Palmans; Richard P. Hugtenburg; C. Wojnecki; David Parker
Dosimetry using a PMMA phantom was performed in 15 and 29 MeV proton beams from the Birmingham cyclotron, with a Markus parallel-plate ionization chamber and GafChromic EBT and MD-V2-55 film. Simulations of the depth-dose curves were performed with FLUKA 2008.3 and MCNPX 2.5.0, which agreed almost perfectly with each other in range and only differed by 2% in the Bragg peak (BP) region. FLUKA was also used to calculate k(Q) factors for Markus chamber measurements as an improvement to the IAEA TRS-398 values in low-energy beams. FLUKA depth-dose simulations overestimate the BP height measured by ion chamber by about 10%, where the initial proton energy spread was estimated by fitting to the slope of the measured BP distal edge. Both GafChromic films showed an under-response in the BP compared to ion chamber; however, EBT exhibits this effect at lower energies than MD-V2-55. A possible reason for this is attributed to the shape and arrangement of the monomer particles being different in the active components of EBT and MD-V2-55. Relative effectiveness (RE) of both films is presented as functions of residual range R(res) in water and peak proton energy determined by FLUKA, with considerations for the spatial separation of the two active layers in each film. The proton energies at which RE reduces to 90% of maximum film response are 6.7 and 3.2 MeV for MD-V2-55 and EBT, respectively. Additionally, a beam quality correction factor (g(Q,Q0)) is suggested for both GafChromic films, involving water-to-film stopping power ratios evaluated using ICRU recommendations, and a polymer yield factor G(Q0)/G(Q). RE in this work is equated to the reciprocal of the polymer yield factor. The calculated values of (S(w,film))Q/(S(w,film))Q0 are constant within 2.1% and 1.2% across the proton energy range of 1-300 MeV for EBT and MD-V2-55, respectively, so it is concluded that the polymer yield factor is the dominant factor causing the LET quenching effect.
Applied Radiation and Isotopes | 2012
D.A. Bradley; Richard P. Hugtenburg; A. Nisbet; Ahmad Taufek Abdul Rahman; Fatma Issa; Noramaliza Mohd Noor; Amani I. Alalawi
Review is made of dosimetric studies of Ge-doped SiO(2) telecommunication fibre as a 1-D thermoluminescence (TL) system for therapeutic applications. To-date, the response of these fibres has been investigated for UV sources, superficial X-ray beam therapy facilities, a synchrotron microbeam facility, electron linear accelerators, protons, neutrons and alpha particles, covering the energy range from a few eV to several MeV. Dosimetric characteristics include, reproducibility, fading, dose response, reciprocity between TL yield and dose-rate and energy dependence. The fibres produce a flat response to fixed photon and electron doses to within better than 3% of the mean TL distribution. Irradiated Ge-doped SiO(2) optical fibres show limited signal fading, with an average loss of TL signal of ~0.4% per day. In terms of dose response, Ge-doped SiO(2) optical fibres have been shown to provide linearity to x and electron doses, from a fraction of 1 Gy up to 2 kGy. The dosimeters have also been used in measuring photoelectron generation from iodinated contrast media; TL yields being some 60% greater in the presence of iodine than in its absence. The review is accompanied by previously unpublished data.
Applied Radiation and Isotopes | 2012
A T Abdul Rahman; Richard P. Hugtenburg; Siti Fairus Abdul Sani; Amani I. Alalawi; Fatma Issa; R. Thomas; M.A. Barry; A. Nisbet; D.A. Bradley
We investigate the ability of high spatial resolution (∼120 μm) Ge-doped SiO2 TL dosimeters to measure photoelectron dose enhancement resulting from the use of a moderate to high-Z target (an iodinated contrast media) irradiated by 90 kVp X-rays. We imagine its application in a novel radiation synovectomy technique, modelled by a phantom containing a reservoir of I2 molecules at the interface of which the doped silica dosimeters are located. Measurements outside of the iodine photoelectron range are provided for using a stepped-design that allows insertion of the fibres within the phantom. Monte Carlo simulation (MCNPX) is used for verification. At the phantom medium I2-interface additional photoelectron generation is observed, ∼60% above that in the absence of the I2, simulations providing agreement to within 3%. Percentage depth doses measured away from the iodine contrast medium reservoir are bounded by published PDDs at 80 kVp and 100 kVp.
Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms | 2004
K Geraki; M Farquharson; D.A. Bradley; Richard P. Hugtenburg
A synchrotron X-ray fluorescence system was employed to quantify the levels of iron, copper, zinc and potassium in 80 healthy and cancerous breast tissue samples. The statistical analysis of the sample concentrations reveals a trend of elevated levels in the cancerous tissue. The elevation is most pronounced for potassium and least for iron.
Applied Radiation and Isotopes | 2012
Fatma Issa; A T Abdul Rahman; Richard P. Hugtenburg; D.A. Bradley; A. Nisbet
This study aims to establish the sensitive, ∼120 μm high spatial resolution, high dynamic range Ge-doped optical fibres as thermoluminescence (TL) dosimeters for brachytherapy dose distribution. This requires investigation to accommodate sensitivity of detection, both for the possibility of short range dose deposition from beta components as well as gamma/x-mediated dose. In-air measurements are made at distances close to radionuclide sources, evaluating the fall off in dose along the transverse axis of 133Ba and 60Co radioactive sources, at distances from 2 mm up to 20 mm from their midpoints. Measurements have been compared with Monte Carlo code DOSRZnrc simulations for photon-mediated dose only, agreement being obtained to within 3% and 1% for the 133Ba and 60Co sources, respectively. As such, in both cases it is determined that as intended, beta dose has been filtered out by source encapsulation.
Physics in Medicine and Biology | 2001
Richard P. Hugtenburg; Kristen Johnston; Graham J. Chalmers; Alun H. Beddoe
Diamond detectors have become an increasingly popular dosimetric method where either high spatial resolution is required or where photon or electron spectra are likely to change with depth or field size. However, little work has been previously reported for superficial energies. This paper reports the response of a commercially available diamond detector (PTW Freiburg/IPTB Dubna) at 45 kVp (0.55 mm Al first HVL) and 100 kVp (2.3 mm Al first HVL) including dose and dose-rate linearity, percentage depth-dose and output factors as a function of applicator size. Comparisons are made with Br J. Radiol. supplement 25 data, measurements using a PTW parallel-plate chamber and Monte Carlo simulations based on spectra determined from transmission measurements in aluminium. Excellent agreement was obtained for percentage depth-dose curves between Monte Carlo and diamond after correcting for sublinearity of the dose-rate response and energy dependence of the diamond detector. However, significant differences were noted between diamond/Monte Carlo and the parallel-plate chamber, which is attributed to the perturbation caused by the polyethylene base of the chamber
Physics in Medicine and Biology | 2014
S.M. Jafari; Amani I. Alalawi; M. Hussein; W. M. Al-Saleh; M.A. Najem; Richard P. Hugtenburg; D.A. Bradley; N. M. Spyrou; Catharine H. Clark; A. Nisbet
An investigation has been made of glass beads and optical fibres as novel dosimeters for small-field photon radiation therapy dosimetry. Commercially available glass beads of largest dimension 1.5 mm and GeO2-doped SiO2 optical fibres of 5 mm length and 120 µm diameter were characterized as thermoluminescence dosimeters. Results were compared against Monte-Carlo simulations with BEAMnrc/DOSXYZnrc, EBT3 Gafchromic film, and a high-resolution 2D-array of liquid-filled ionization chambers. Measurements included relative output factors and dose profiles for square-field sizes of 1, 2, 3, 4, and 10 cm. A customized Solid-Water® phantom was employed, and the beads and fibres were placed at defined positions along the longitudinal axis to allow accurate beam profile measurement. Output factors and the beam profile parameters were compared against those calculated by BEAMnrc/DOSXYZnrc. The output factors and field width measurements were found to be in agreement with reference measurements to within better than 3.5% for all field sizes down to 2 cm2 for both dosimetric systems, with the beads showing a discrepancy of no more than 2.8% for all field sizes. The results confirm the potential of the beads and fibres as thermoluminescent dosimeters for use in small photon radiation field sizes.
Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms | 2004
Zaizhe Yin; Richard P. Hugtenburg; Stuart Green; Alun H. Beddoe
The characterisation of a detectors response in the kilovoltage range is necessary to understand its response to scattered radiation in the megavoltage range. Scattered radiation is absorbed in the detector by the highly Z-dependent photoelectric process. Measurements of diamond detector response to highly filtered quasi-monoenergetic X-rays and synchrotron-generated monoenergetic photons have been performed revealing effects that relate to the presence of copper and silver used to form electrical contact with the crystal. A three-component model of energy absorption, utilizing tabulated cross-sections for C, Cu and Ag, is proposed and a calculation of phantom scatter factors for diamond detector is given.
Physics in Medicine and Biology | 2009
S. Manolopoulos; C. Wojnecki; Richard P. Hugtenburg; M A Jaafar Sidek; G Chalmers; G Heyes; Stuart Green
DOSI, a novel dosimeter based on position sensitive detectors for particle physics experiments, was used for relative clinical dosimetry measurements in small radiotherapy fields. The device is capable of dynamic measurements in real time and provides sub-millimetre spatial resolution. The basic beam data for a stereotactic radiotherapy collimator system (BrainLAB) using 6 MV photons were measured and compared with the corresponding data acquired with a small diamond detector and a PinPoint ionization chamber. All measurements showed an excellent agreement between DOSI and the diamond detector. There was an increasing discrepancy between the relative output factors (ROF) measured with DOSI and those measured with the ionization chamber with decreasing field size, specifically for collimators with a diameter smaller than 15 mm. The percentage depth doses (PDD) were in agreement to better than 1% for all depths. The agreement on off-axis ratios (OAR) was better than 3% for all collimators, whereas the agreement on relative output factors (ROF) was at the 1% level. DOSIs fast read-out electronics made it possible for all measurements to be recorded within 45 min including time to change collimators. This should reduce the overall time for commissioning and QA measurements, an important factor especially for busy radiotherapy departments.
Journal of the Royal Society Interface | 2010
John Pattison; Richard P. Hugtenburg; Stuart Green
Ongoing controversy surrounds the adverse health effects of the use of depleted uranium (DU) munitions. The biological effects of gamma-radiation arise from the direct or indirect interaction between secondary electrons and the DNA of living cells. The probability of the absorption of X-rays and gamma-rays with energies below about 200 keV by particles of high atomic number is proportional to the third to fourth power of the atomic number. In such a case, the more heavily ionizing low-energy recoil electrons are preferentially produced; these cause dose enhancement in the immediate vicinity of the particles. It has been claimed that upon exposure to naturally occurring background gamma-radiation, particles of DU in the human body would produce dose enhancement by a factor of 500–1000, thereby contributing a significant radiation dose in addition to the dose received from the inherent radioactivity of the DU. In this study, we used the Monte Carlo code EGSnrc to accurately estimate the likely maximum dose enhancement arising from the presence of micrometre-sized uranium particles in the body. We found that although the dose enhancement is significant, of the order of 1–10, it is considerably smaller than that suggested previously.