Richard Reiss
Exponent
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Richard Reiss.
Inhalation Toxicology | 2007
Richard Reiss; Elizabeth L. Anderson; Carroll E. Cross; George M. Hidy; David G. Hoel; Roger O. McClellan; Suresh H. Moolgavkar
Ambient particulate matter (PM) is a complex mixture of inorganic and organic compounds. The U.S. Environmental Protection Agency (EPA) regulates PM as a criteria pollutant and promulgates National Ambient Air Quality Standards for it. The PM indicator is based on mass concentration, unspecified as to chemical composition, for specific size fractions. The numerical standards are based on epidemiologic evidence of associations between the various size-related particle mass concentrations as indicators and excess mortality and cardiorespiratory health effects as endpoints. The U.S. National Research Council has stated that more research is needed to differentiate the apparent health effects associated with different particle chemical constituents. Sulfate and nitrate constitute a significant portion of the particle mass in the atmosphere, but are accompanied by similar amounts of carbonaceous material, along with low concentrations of various species, including bioactive organic compounds and redox cycling metals. Extensive animal and human toxicology data show no significant effects for particles consisting only of sulfate and nitrate compounds at levels in excess of ambient air concentrations. A few epidemiologic studies, including both short-term time-series studies and long-term cohort studies, have included the sulfate content of PM as a specific variable in health effect analyses. There are much less data for nitrate. The results from the epidemiologic studies with PM sulfate are inconsistent. A detailed analysis of the time-series epidemiological studies shows that PM sulfate has a weaker “risk factor” than PM2.5 for health effects. Since sulfate is correlated with PM2.5, this result is inconsistent with sulfate having a strong health influence. However, there are many limitations with these types of studies that warrant caution for any comparison between a chemical component and mass concentration. In total, the epidemiologic and toxicologic evidence provide little or no support for a causal association of PM sulfate and health risk at ambient concentrations. For nitrate-containing PM, virtually no epidemiological data exist. Limited toxicological evidence does not support a causal association between particulate nitrate compounds and excess health risks. There are some possible indirect processes through which sulfate and nitrate in PM may affect health-related endpoints, including interactions with certain metal species and a linkage with production of secondary organic matter. There is insufficient evidence to include or exclude these processes as being potentially important to PM-associated health risk.
Food and Chemical Toxicology | 2012
Richard Reiss; Jason Johnston; Kevin Tucker; John M. DeSesso; Carl L. Keen
The current paper provides an analysis of the potential number of cancer cases that might be prevented if half the U.S. population increased its fruit and vegetable consumption by one serving each per day. This number is contrasted with an upper-bound estimate of concomitant cancer cases that might be theoretically attributed to the intake of pesticide residues arising from the same additional fruit and vegetable consumption. The cancer prevention estimates were derived using a published meta-analysis of nutritional epidemiology studies. The cancer risks were estimated using U.S. Environmental Protection Agency (EPA) methods, cancer potency estimates from rodent bioassays, and pesticide residue sampling data from the U.S. Department of Agriculture (USDA). The resulting estimates are that approximately 20,000 cancer cases per year could be prevented by increasing fruit and vegetable consumption, while up to 10 cancer cases per year could be caused by the added pesticide consumption. These estimates have significant uncertainties (e.g., potential residual confounding in the fruit and vegetable epidemiologic studies and reliance on rodent bioassays for cancer risk). However, the overwhelming difference between benefit and risk estimates provides confidence that consumers should not be concerned about cancer risks from consuming conventionally-grown fruits and vegetables.
Critical Reviews in Toxicology | 2015
Richard Reiss; Ellen T. Chang; Rudy J. Richardson; Michael Goodman
Abstract This paper systematically reviews epidemiologic studies related to low-level non-occupational exposures to organophosphorus (OP) insecticides. Many of the studies evaluate levels of maternal OP metabolites and subsequent health outcomes in offspring. The studies focused primarily on birth outcomes (e.g., infant body weight or head circumference) and neurodevelopmental (e.g., mental and psychomotor) testing results. The evidence from these studies was reviewed under the Bradford Hill guidelines. Most of the studies assessing exposure based on urinary levels of OP insecticide metabolites used only one or two measurements during pregnancy. The potential for exposure misclassification with this method is largely due to (1) preformed metabolites that are ingested with food, (2) the short elimination half-life of OP insecticides, and (3) lack of specificity to particular OP insecticides for many of the metabolites. For birth outcomes, the majority of reported results are not statistically significant, and the associations are inconsistent within and across studies. There is more within-study consistency for some of the neurodevelopmental testing results, although few associations were examined across several studies. These associations are generally weak, have been replicated only to a limited extent, and require further confirmation before they can be considered established. The OP insecticide levels measured in the epidemiologic studies are too low to cause biologically meaningful acetylcholinesterase inhibition, the most widely used metric for OP insecticide toxicity. Overall, the available evidence does not establish that low-level exposures to OP insecticides cause adverse birth outcomes or neurodevelopmental problems in humans.
Regulatory Toxicology and Pharmacology | 2012
Richard Reiss; Barbara H. Neal; James C. Lamb; Daland R. Juberg
This paper evaluates new data for cholinesterase inhibition with chlorpyrifos (CPF). Marty et al. (2012) recently conducted a CPF cholinesterase inhibition study in rats that included testing of males and females, dosing by gavage or diet, administration in corn oil or milk, and with pups and adults. Additionally, the study included cholinesterase inhibition testing for CPF-oxon, the active moiety that inhibits cholinesterase. The study included 5-6 dose groups with eight animals/sex/group for most of the tests. This paper provides a benchmark dose (BMD) analysis of the data from Marty et al. (2012), including a BMD meta-analysis that includes CPF cholinesterase inhibition data from different assays within the Marty et al. (2012) study and, in one case, from another study. From the meta-analysis, the recommended BMD(10)s, based on brain acetylcholinesterase inhibition, are 1.7 mg/kg/day (BMDL₁₀ = 1.3mg/kg/day) for acute doses to children and adults, and 0.67 mg/kg/day (BMDL₁₀ = 0.53 mg/kg/day) for repeat doses to children and adults. At the dose levels considered in this analysis, there was no evidence of a difference in responses between males and females, corn oil versus milk administration, or pups versus adults. The data on pups versus adults show that an extra safety factor to protect the young is not needed for CPF. CPF data from the literature suggest that brain cholinesterase inhibition is the most appropriate metric for cholinesterase inhibition risk assessment.
Risk Analysis | 2012
Kenneth T. Bogen; Richard Reiss
A simple analytic solution to the dynamic version of Habers law was derived, conditional on a specified toxic load exponent (n) and on exponential decline in environmental toxicant concentration. Such conditions are particularly relevant to assessing ecotoxicity risk posed (e.g., to juvenile salmonids) by agricultural organophosphate (OP) pesticides that are subject to degradation and/or dissipation. A dynamic Habers law model was fit to previously published detailed data on lethality for two aquatic species induced by six agricultural OP pesticides, and more crude fits were obtained to less detailed data on five other OP and on two non-OP pesticides, indicating that for lethality, a range of 0.5 ≤ n ≤ 1.5 may be typical for OP pesticides. The AgDRIFT(®) stream deposition model was next used to establish that first-order or exponential loss, with dilution half-times on the order of ≤0.01 days, pertains approximately to pesticide residues in streams that arise after aerial application of agricultural pesticides 100 feet upwind. The analytic model was then applied to demonstrate that pesticide concentrations deposited in downwind streams following an aerial application are effectively diluted by about 50- to 300-fold from their initial concentration. Riparian ecotoxicity risk assessment models that ignore this effective dilution, and base pesticide-specific estimates of reduced survival on the initial concentrations, are therefore unrealistically conservative.
Risk Analysis | 2003
Richard Reiss; Elizabeth L. Anderson; James Lape
A conceptual framework is presented for conducting exposure assessments under the U.S. EPAs Voluntary Childrens Chemical Evaluation Program (VCCEP). The VCCEP is a voluntary program whereby companies that manufacture chemicals of potential concern are asked to conduct hazard, exposure, and risk assessments for the chemicals. The VCCEP is unique in its risk-based, tiered approach, and because it focuses on children and requires a comprehensive consideration of all reasonably foreseeable exposure pathways for a particular chemical. The consideration of all potential exposure pathways for some commonly used chemicals presents a daunting challenge for the exposure assessor. This article presents a framework for managing this complicated process, and illustrates the application of the framework with a hypothetical case study. The framework provides guidance for interpreting multiple sources of exposure information and developing a plausible list of exposure pathways for a chemical. Furthermore, the framework provides a means to process all the available information to eliminate pathways of negligible concern from consideration. Finally, the framework provides guidance for utilizing the tiered approach of VCCEP to efficiently conduct an assessment by first using simple, screening-level approaches and then, if necessary, using more complex, refined exposure assessment methods. The case study provides an illustration of the major concepts.
Environmental Toxicology and Chemistry | 2002
Richard Reiss; Neil Mackay; Cliff Habig; John Griffin
Regulatory Toxicology and Pharmacology | 2000
Chris F. Wilkinson; Greg R. Christoph; Elizabeth Julien; J.Michael Kelley; Joel M. Kronenberg; John McCarthy; Richard Reiss
Environmental Toxicology and Chemistry | 2009
Richard Reiss; Gavin Lewis; John Griffin
Atmospheric Environment | 2006
Richard Reiss