Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard T. Cederwall is active.

Publication


Featured researches published by Richard T. Cederwall.


Quarterly Journal of the Royal Meteorological Society | 2002

Large‐eddy simulation of the diurnal cycle of shallow cumulus convection over land

A. R. Brown; Richard T. Cederwall; Andreas Chlond; Peter G. Duynkerke; J. C. Golaz; Marat Khairoutdinov; D. C. Lewellen; A. P. Lock; M. K. Macvean; Chin-Hoh Moeng; Roel Neggers; A. P. Siebesma; Bjorn Stevens

SUMMARY Large-eddy simulations of the development of shallow cumulus convection over land are presented. Many characteristics of the cumulus layer previously found in simulations of quasi-steady convection over the sea are found to be reproduced in this more strongly forced, unsteady case. Furthermore, the results are shown to be encouragingly robust, with similar results obtained with eight independent models, and also across a range of numerical resolutions. The datasets produced are already being used in the development and evaluation of parametrizations used in numerical weather-prediction and climate models.


Monthly Weather Review | 2001

Objective Analysis of ARM IOP Data: Method and Sensitivity

Minghua Zhang; J. L. Lin; Richard T. Cederwall; J. John Yio; S. C. Xie

Abstract Motivated by the need to obtain accurate objective analysis of field experimental data to force physical parameterizations in numerical models, this paper first reviews the existing objective analysis methods and interpolation schemes that are used to derive atmospheric wind divergence, vertical velocity, and advective tendencies. Advantages and disadvantages of different methods are discussed. It is shown that considerable uncertainties in the analyzed products can result from the use of different analysis. The paper then describes a hybrid approach to combine the strengths of the regular grid and the line-integral methods, together with a variational constraining procedure for the analysis of field experimental data. In addition to the use of upper-air data, measurements at the surface and at the top of the atmosphere (TOA) are used to constrain the upper-air analysis to conserve column-integrated mass, water, energy, and momentum. Analyses are shown for measurements taken in the Atmospheric Ra...


Quarterly Journal of the Royal Meteorological Society | 2002

An intercomparison of cloud-resolving models with the atmospheric radiation measurement summer 1997 intensive observation period data

Kuan Man Xu; Richard T. Cederwall; Leo J. Donner; Wojciech W. Grabowski; Françoise Guichard; Daniel E. Johnson; Marat Khairoutdinov; Steven K. Krueger; Jon Petch; David A. Randall; Charles Seman; Wei-Kuo Tao; Donghai Wang; Shao Cheng Xie; J. John Yio; Minghua Zhang

SUMMARY This paper reports an intercomparison study of midlatitude continental cumulus convection simulated by eight two-dimensional and twothree-dimensional cloud-resolving models (CRMs), driven by observed large-scale advective temperature and moisture tendencies, surface turbulent euxes, and radiative-heating proe les during three sub-periods of the summer 1997 Intensive Observation Period of the US Department of Energy’s Atmospheric Radiation Measurement (ARM) program. Each sub-period includes two or three precipitation events of various intensities over a span of 4 or 5 days. The results can be summarized as follows. CRMs can reasonably simulate midlatitude continental summer convection observed at the ARM Cloud and Radiation Testbed site in terms of the intensity of convective activity, and the temperature and specie c-humidity evolution. Delayed occurrences of the initial precipitation events are a common feature for all three sub-cases among the models. Cloud mass e uxes, condensate mixing ratios and hydrometeor fractions produced by all CRMs are similar. Some of the simulated cloud properties such as cloud liquid-water path and hydrometeor fraction are rather similar to available observations. All CRMs produce large downdraught mass euxes with magnitudes similar to those of updraughts, in contrast to CRM results for tropical convection. Some inter-model differences in cloud properties are likely to be related to those in the parametrizations of microphysical processes. There is generally a good agreement between the CRMs and observations with CRMs being signie cantly better than single-column models (SCMs), suggesting that current results are suitable for use in improving parametrizations in SCMs. However, improvements can still be made in the CRM simulations; these include the proper initialization of the CRMs and a more proper method of diagnosing cloud boundaries in model outputs for comparison with satellite and radar cloud observations.


Bulletin of the American Meteorological Society | 2004

Evaluating Parameterizations in General Circulation Models: Climate Simulation Meets Weather Prediction

Thomas J. Phillips; Gerald L. Potter; David L. Williamson; Richard T. Cederwall; James S. Boyle; Michael Fiorino; J. J. Hnilo; Jerry G. Olson; Shaocheng Xie; J. John Yio

To significantly improve the simulation of climate by general circulation models (GCMs), systematic errors in representations of relevant processes must first be identified, and then reduced. This endeavor demands that the GCM parameterizations of unresolved processes, in particular, should be tested over a wide range of time scales, not just in climate simulations. Thus, a numerical weather prediction (NWP) methodology for evaluating model parameterizations and gaining insights into their behavior may prove useful, provided that suitable adaptations are made for implementation in climate GCMs. This method entails the generation of short-range weather forecasts by a realistically initialized climate GCM, and the application of six hourly NWP analyses and observations of parameterized variables to evaluate these forecasts. The behavior of the parameterizations in such a weather-forecasting framework can provide insights on how these schemes might be improved, and modified parameterizations then can be test...


Quarterly Journal of the Royal Meteorological Society | 2002

Intercomparison and evaluation of cumulus parametrizations under summertime midlatitude continental conditions

Shaocheng Xie; Kuan Man Xu; Richard T. Cederwall; Peter Bechtold; Anthony D. Del Genio; Stephen A. Klein; Douglas G. Cripe; Steven J. Ghan; David Gregory; Sam F. Iacobellis; Steven K. Krueger; Ulrike Lohmann; Jon Petch; David A. Randall; Leon D. Rotstayn; Richard C. J. Somerville; Yugesh C. Sud; Knut von Salzen; G. K. Walker; Audrey B. Wolf; J. John Yio; Guang J. Zhang; Minghua Zhang

This study reports the Single-Column Model (SCM) part of the Atmospheric Radiation Measurement (ARM)/the Global Energy and Water Cycle Experiment (GEWEX) Cloud System Study (GCSS) joint SCM and Cloud-Resolving Model (CRM) Case 3 intercomparison study, with a focus on evaluation of cumulus parametrizations used in SCMs. Fifteen SCMs are evaluated under summertime midlatitude continental conditions using data collected at the ARM Southern Great Plains site during the summer 1997 Intensive Observing Period. Results from ten CRMs are also used to diagnose problems in the SCMs. It is shown that most SCMs can generally capture well the convective events that were well-developed within the SCM domain, while most of them have difficulties in simulating the occurrence of those convective events that only occurred within a small part of the domain. All models significantly underestimate the surface stratiform precipitation. A third of them produce large errors in surface precipitation and thermodynamic structures. Deficiencies in convective triggering mechanisms are thought to be one of the major reasons. Using a triggering mechanism that is based on the vertical integral of parcel buoyant energy without additional appropriate constraints results in overactive convection, which in turn leads to large systematic warm/dry biases in the troposphere. It is also shown that a non-penetrative convection scheme can underestimate the depth of instability for midlatitude convection, which leads to large systematic cold/moist biases in the troposphere. SCMs agree well quantitatively with CRMs in the updraught mass fluxes, while most models significantly underestimate the downdraught mass fluxes. Neglect of mesoscale updraught and downdraught mass fluxes in the SCMs contributes considerably to the discrepancies between the SCMs and the CRMs. In addition, uncertainties in the diagnosed mass fluxes in the CRMs and deficiencies with cumulus parametrizations are not negligible. Similar results are obtained in the sensitivity tests when different forcing approaches are used. Finally, sensitivity tests from an SCM indicate that its simulations can be greatly improved when its triggering mechanism and closure assumption are improved.


Journal of Geophysical Research | 2000

A comparison of single column model simulations of summertime midlatitude continental convection

Steven J. Ghan; David A. Randall; Kuan-Man Xu; Richard T. Cederwall; Douglas G. Cripe; James J. Hack; Sam F. Iacobellis; Stephen A. Klein; Steven K. Krueger; Ulrike Lohmann; John Pedretti; Alan Robock; Leon D. Rotstayn; Richard C. J. Somerville; Georgiy L. Stenchikov; Y. C. Sud; G. K. Walker; Shaocheng Xie; J. John Yio; Minghua Zhang

Eleven different single-column models (SCMs) and one cloud ensemble model (CEM) are driven by boundary conditions observed at the Atmospheric Radiation Measurement (ARM) program southern Great Plains site for a 17 day period during the summer of 1995. Comparison of the model simulations reveals common signatures identifiable as products of errors in the boundary conditions. Intermodel differences in the simulated temperature, humidity, cloud, precipitation, and radiative fluxes reflect differences in model resolution or physical parameterizations, although sensitive dependence on initial conditions can also contribute to intermodel differences. All models perform well at times but poorly at others. Although none of the SCM simulations stands out as superior to the others, the simulation by the CEM is in several respects in better agreement with the observations than the simulations by the SCMs. Nudging of the simulated temperature and humidity toward observations generally improves the simulated cloud and radiation fields as well as the simulated temperature and humidity but degrades the precipitation simulation for models with large temperature and humidity biases without nudging. Although some of the intermodel differences have not been explained, others have been identified as model problems that can be or have been corrected as a result of the comparison.


Bulletin of the American Meteorological Society | 2008

Parameterization of the atmospheric boundary layer: A View from just above the inversion

Jose A. Teixeira; Bjorn Stevens; Christopher S. Bretherton; Richard T. Cederwall; J. D. Doyle; Jean-Christophe Golaz; Albert A. M. Holtslag; Stephen A. Klein; Julie K. Lundquist; David A. Randall; A. P. Siebesma; Pedro M. M. Soares

tion models, in spite of some advances, the boundary layer is still not represented realistically. Figure 1 illustrates an aspect of this problem by showing the opposing response of boundary layer (low) clouds to perturbation experiments (e.g., double CO2) in current climate models. The general problem of parameterization in fluids dates back to the first modern studies of turbulence during the nineteenth and early twentieth centuries. By then, it was already clear that for turbulent flows such as the atmosphere, it was not feasible (or even relevant) to try and follow every parcel of f luid in its turbulent trajectories. Instead, research should concentrate on trying to understand the statistical properties of turbulent f lows. With the advent of computers came the possibility of developing numerical models for weather and climate prediction. Numerical discretizations imply a limit for the temporal/spatial scales below which the flow cannot O ne of the main components of the climate system is the atmospheric boundary layer, which mediates the interactions between the ocean/land surface and the free atmosphere. Several boundary Parameterization of the Atmospheric Boundary Layer A View from Just Above the Inversion


Monthly Weather Review | 2000

A Microphysical Retrieval Scheme for Continental Low-Level Stratiform Clouds: Impacts of the Subadiabatic Character on Microphysical Properties and Radiation Budgets

Hung-Neng S. Chin; Daniel J. Rodriguez; Richard T. Cederwall; Catherine C. Chuang; Allen S. Grossman; J. John Yio; Qiang Fu; Mark A. Miller

Abstract Using measurements from the Department of Energy’s Atmospheric Radiation Measurement Program, a modified ground-based remote sensing technique is developed and evaluated to study the impacts of the subadiabatic character of continental low-level stratiform clouds on microphysical properties and radiation budgets. Airborne measurements and millimeter-wavelength cloud radar data are used to validate retrieved microphysical properties of three stratus cloud systems occurring in the April 1994 and 1997 intensive observation periods at the Southern Great Plains site. The addition of the observed cloud-top height into the Han and Westwater retrieval scheme eliminates the need to invoke the adiabatic assumption. Thus, the retrieved liquid water content (LWC) profile is represented as the product of an adiabatic LWC profile and a weighting function. Based on in situ measurements, two types of weighting functions are considered in this study: one is associated with a subadiabatic condition involving cloud...


Health Physics | 1990

ORERP (Off-Site Radiation Exposure Review Project) internal dose estimates for individuals

Yook C. Ng; Lynn R. Anspaugh; Richard T. Cederwall

A method was developed to reconstruct the internal radiation dose to off-site individuals who were exposed to fallout from nuclear weapons tests at the Nevada Test Site (NTS). By this method, committed absorbed doses can be estimated for 22 target organs of persons in four age groups and for selected organs of the fetus. Ingestion doses are calculated by combining age-group dose factors and intakes specific for age group, test event, and location as calculated by the PATHWAY food-chain model. Inhalation doses are calculated by combining age-group dose factors and breathing rates, and time-integrated air concentrations that are derived from the ORERP Air-Quality Data Base. Dose estimates are calculated for the radionuclides that contribute significantly to the total dose; these number 20 via the ingestion pathway and 46 via the inhalation pathway. Internal doses to nonspecified individuals and nonspecified fetuses are being reconstructed for each location in the ORERP Town Data Base for which exposure rates and cloud-arrival times are listed. Examples of reconstructing internal dose are presented. This method will also be adapted to reconstruct internal doses from NTS fallout to specific individuals in accordance with the persons age, past residence, life-style, and living pattern.


Environment International | 1986

Assessing and managing the risks of accidental releases of hazardous gas: A case study of natural gas wells contaminated with hydrogen sulfide

David W. Layton; Richard T. Cederwall

Abstract Natural gas wells contaminated with the toxic gas hydrogen sulfide (i.e., sour-gas wells) pose potential health risks to workers and to nearby residents. The health risks are a function of the dose-response relationship of hydrogen sulfide, the likelihood of accidental releases, gaseous emission rates, the nature of releases at the well head, dispersion of the emitted gas, and the characteristics of the population at risk. We discuss each of these factors and present a risk analysis of a hypothetical sour-gas well in the vicinity of Evanston, WY. We found that the greatest risks for life-threatening effects would occur in the northwest downwind sector after a horizontal release of gas at the well. Subacute effects (e.g., respiratory irritation) after a vertical release of gas would occur primarily to the northeast. Management of health risks involves the use of techniques for preventing inadvertent releases and methods for limiting population exposures.

Collaboration


Dive into the Richard T. Cederwall's collaboration.

Top Co-Authors

Avatar

Shaocheng Xie

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. John Yio

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Stephen A. Klein

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerald L. Potter

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

James S. Boyle

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Karen Johnson

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Renata McCoy

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge