Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen A. Klein is active.

Publication


Featured researches published by Stephen A. Klein.


Journal of Climate | 2006

GFDL's CM2 global coupled climate models. Part I: Formulation and simulation characteristics

Thomas L. Delworth; Anthony J. Broccoli; Anthony Rosati; Ronald J. Stouffer; V. Balaji; John A. Beesley; William F. Cooke; Keith W. Dixon; John P. Dunne; Krista A. Dunne; Jeffrey W. Durachta; Kirsten L. Findell; Paul Ginoux; Anand Gnanadesikan; C. T. Gordon; Stephen M. Griffies; Rich Gudgel; Matthew J. Harrison; Isaac M. Held; Richard S. Hemler; Larry W. Horowitz; Stephen A. Klein; Thomas R. Knutson; Paul J. Kushner; Amy R. Langenhorst; Hyun-Chul Lee; Shian Jiann Lin; Jian Lu; Sergey Malyshev; P. C. D. Milly

Abstract The formulation and simulation characteristics of two new global coupled climate models developed at NOAAs Geophysical Fluid Dynamics Laboratory (GFDL) are described. The models were designed to simulate atmospheric and oceanic climate and variability from the diurnal time scale through multicentury climate change, given our computational constraints. In particular, an important goal was to use the same model for both experimental seasonal to interannual forecasting and the study of multicentury global climate change, and this goal has been achieved. Two versions of the coupled model are described, called CM2.0 and CM2.1. The versions differ primarily in the dynamical core used in the atmospheric component, along with the cloud tuning and some details of the land and ocean components. For both coupled models, the resolution of the land and atmospheric components is 2° latitude × 2.5° longitude; the atmospheric model has 24 vertical levels. The ocean resolution is 1° in latitude and longitude, wi...


Journal of Climate | 1993

The seasonal cycle of low stratiform clouds

Stephen A. Klein; Dennis L. Hartmann

Abstract The seasonal cycle of low stratiform clouds is studied using data from surface-based cloud climatologies. The impact of low clouds on the radiation budget is illustrated by comparison of data from the Earth Radiation Budget Experiment with the cloud climatologies. Ten regions of active stratocumulus convection are identified. These regions fall into four categories: subtropical marine, midlatitude marine, Arctic stratus, and Chinese stratus. With the exception of the Chinese region, all the regions with high amounts of stratus clouds are over the oceans. In all regions except the Arctic, the season of maximum stratus corresponds to the season of greatest lower-troposphere static stability. Interannual variations in stratus cloud amount also are related to changes in static stability. A linear analysis indicates that a 6% increase in stratus fractional area coverage is associated with each 1°C increase in static stability. Over midlatitude oceans, sky-obscuring fog is a large component of the summ...


Journal of Climate | 1999

Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge

Stephen A. Klein; Brian J. Soden; Ngar Cheung Lau

Abstract In an El Nino event, positive SST anomalies usually appear in remote ocean basins such as the South China Sea, the Indian Ocean, and the tropical North Atlantic approximately 3 to 6 months after SST anomalies peak in the tropical Pacific. Ship data from 1952 to 1992 and satellite data from the 1980s both demonstrate that changes in atmospheric circulation accompanying El Nino induce changes in cloud cover and evaporation which, in turn, increase the net heat flux entering these remote oceans. It is postulated that this increased heat flux is responsible for the surface warming of these oceans. Specifically, over the eastern Indian Ocean and South China Sea, enhanced subsidence during El Nino reduces cloud cover and increases the solar radiation absorbed by the ocean, thereby leading to enhanced SSTs. In the tropical North Atlantic, a weakening of the trade winds during El Nino reduces surface evaporation and increases SSTs. These relationships fit the concept of an “atmospheric bridge” that conne...


Journal of Climate | 2004

The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations

Jeffrey L. Anderson; V. B Alaji; Anthony J. Broccoli; William F. C Ooke; W. D Ixon; L Eo J. Donner; Krista A. Dunne; Stuart M. Freidenreich; T. G Arner; R Ichard G. Gudgel; Saac M. Held; Richard S. Hemler; L Arry W. H Orowitz; Stephen A. Klein; Thomas R. Knutson; Paul J. Kushner; Amy R. Langenhost; Ngar-Cheung Lau; Zhi Liang; Sergey Malyshev; P. C. D. Milly; Mary Jo Nath; J. Ploshay; Elena Shevliakova; Joseph J. Sirutis; Rian J. Soden; W Illiam F. S Tern; Lori A. Thompson; R. John Wilson; Andrew T. W Ittenberg

The configuration and performance of a new global atmosphere and land model for climate research developed at the Geophysical Fluid Dynamics Laboratory (GFDL) are presented. The atmosphere model, known as AM2, includes a new gridpoint dynamical core, a prognostic cloud scheme, and a multispecies aerosol climatology, as well as components from previous models used at GFDL. The land model, known as LM2, includes soil sensible and latent heat storage, groundwater storage, and stomatal resistance. The performance of the coupled model AM2‐LM2 is evaluated with a series of prescribed sea surface temperature (SST) simulations. Particular


Journal of Climate | 2011

The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3

Leo J. Donner; Bruce Wyman; Richard S. Hemler; Larry W. Horowitz; Yi Ming; Ming Zhao; Jean-Christophe Golaz; Paul Ginoux; Shian-Jiann Lin; M. Daniel Schwarzkopf; John Austin; Ghassan Alaka; William F. Cooke; Thomas L. Delworth; Stuart M. Freidenreich; Charles T. Gordon; Stephen M. Griffies; Isaac M. Held; William J. Hurlin; Stephen A. Klein; Thomas R. Knutson; Amy R. Langenhorst; Hyun-Chul Lee; Yanluan Lin; Brian I. Magi; Sergey Malyshev; P. C. D. Milly; Vaishali Naik; Mary Jo Nath; Robert Pincus

AbstractThe Geophysical Fluid Dynamics Laboratory (GFDL) has developed a coupled general circulation model (CM3) for the atmosphere, oceans, land, and sea ice. The goal of CM3 is to address emerging issues in climate change, including aerosol–cloud interactions, chemistry–climate interactions, and coupling between the troposphere and stratosphere. The model is also designed to serve as the physical system component of earth system models and models for decadal prediction in the near-term future—for example, through improved simulations in tropical land precipitation relative to earlier-generation GFDL models. This paper describes the dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component (AM3) of this model. Relative to GFDL AM2, AM3 includes new treatments of deep and shallow cumulus convection, cloud droplet activation by aerosols, subgrid variability of stratiform vertical velocities for droplet activation, and atmospheric chemistry driven by emiss...


Monthly Weather Review | 1999

Validation and Sensitivities of Frontal Clouds Simulated by the ECMWF Model

Stephen A. Klein; Christian Jakob

Abstract Clouds simulated by the European Centre for Medium-Range Weather Forecasts (ECMWF) model are composited to derive the typical organization of clouds surrounding a midlatitude baroclinic system. Comparison of this composite of about 200 cyclones with that based on satellite data reveals that the ECMWF model quite accurately simulates the general positioning of clouds relative to a low pressure center. However, the optical depths of the model’s high/low clouds are too small/large relative to the satellite observations, and the model lacks the midlevel topped clouds observed to the west of the surface cold front. Sensitivity studies with the ECMWF model reveal that the error in high-cloud optical depths is more sensitive to the assumptions applied to the ice microphysics than to the inclusion of cloud advection or a change of horizontal resolution from 0.5625° to 1.69° lat. This reflects the fact that in the ECMWF model gravitational settling is the most rapid process controlling the abundance of ic...


Proceedings of the National Academy of Sciences of the United States of America | 2007

Identification of human-induced changes in atmospheric moisture content

Benjamin D. Santer; Carl A. Mears; Frank J. Wentz; Karl E. Taylor; Peter J. Gleckler; T. M. L. Wigley; Tim P. Barnett; James S. Boyle; Wolfgang Brüggemann; Nathan P. Gillett; Stephen A. Klein; Gerald A. Meehl; Toru Nozawa; David W. Pierce; Peter A. Stott; Warren M. Washington; Michael F. Wehner

Data from the satellite-based Special Sensor Microwave Imager (SSM/I) show that the total atmospheric moisture content over oceans has increased by 0.41 kg/m2 per decade since 1988. Results from current climate models indicate that water vapor increases of this magnitude cannot be explained by climate noise alone. In a formal detection and attribution analysis using the pooled results from 22 different climate models, the simulated “fingerprint” pattern of anthropogenically caused changes in water vapor is identifiable with high statistical confidence in the SSM/I data. Experiments in which forcing factors are varied individually suggest that this fingerprint “match” is primarily due to human-caused increases in greenhouse gases and not to solar forcing or recovery from the eruption of Mount Pinatubo. Our findings provide preliminary evidence of an emerging anthropogenic signal in the moisture content of earths atmosphere.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Forced and unforced ocean temperature changes in Atlantic and Pacific tropical cyclogenesis regions

B. D. Santer; T. M. L. Wigley; Peter J. Gleckler; Céline Bonfils; Michael F. Wehner; Krishna AchutaRao; Tim P. Barnett; James S. Boyle; Wolfgang Brüggemann; M. Fiorino; Nathan P. Gillett; James E. Hansen; P. D. Jones; Stephen A. Klein; Gerald A. Meehl; S. C. B. Raper; Richard W. Reynolds; Karl E. Taylor; Warren M. Washington

Previous research has identified links between changes in sea surface temperature (SST) and hurricane intensity. We use climate models to study the possible causes of SST changes in Atlantic and Pacific tropical cyclogenesis regions. The observed SST increases in these regions range from 0.32°C to 0.67°C over the 20th century. The 22 climate models examined here suggest that century-timescale SST changes of this magnitude cannot be explained solely by unforced variability of the climate system. We employ model simulations of natural internal variability to make probabilistic estimates of the contribution of external forcing to observed SST changes. For the period 1906–2005, we find an 84% chance that external forcing explains at least 67% of observed SST increases in the two tropical cyclogenesis regions. Model “20th-century” simulations, with external forcing by combined anthropogenic and natural factors, are generally capable of replicating observed SST increases. In experiments in which forcing factors are varied individually rather than jointly, human-caused changes in greenhouse gases are the main driver of the 20th-century SST increases in both tropical cyclogenesis regions.


Journal of Climate | 2013

Contributions of Different Cloud Types to Feedbacks and Rapid Adjustments in CMIP5

Mark D. Zelinka; Stephen A. Klein; Karl E. Taylor; Timothy Andrews; Mark J. Webb; Jonathan M. Gregory; Piers M. Forster

AbstractUsing five climate model simulations of the response to an abrupt quadrupling of CO2, the authors perform the first simultaneous model intercomparison of cloud feedbacks and rapid radiative adjustments with cloud masking effects removed, partitioned among changes in cloud types and gross cloud properties. Upon CO2 quadrupling, clouds exhibit a rapid reduction in fractional coverage, cloud-top pressure, and optical depth, with each contributing equally to a 1.1 W m−2 net cloud radiative adjustment, primarily from shortwave radiation. Rapid reductions in midlevel clouds and optically thick clouds are important in reducing planetary albedo in every model. As the planet warms, clouds become fewer, higher, and thicker, and global mean net cloud feedback is positive in all but one model and results primarily from increased trapping of longwave radiation. As was true for earlier models, high cloud changes are the largest contributor to intermodel spread in longwave and shortwave cloud feedbacks, but low ...


Journal of Climate | 1995

On the relationships among low-cloud structure, sea surface temperature, and atmospheric circulation in the summertime Northeast Pacific

Stephen A. Klein; Dennis L. Hartmann; Joel R. Norris

Abstract The long-term record of observations from Ocean Weather Station (OWS) November (N), which operated at 30°N, 140°W from 1949 to 1974, is analyzed to document the relationships among boundary layer cloud structure, sea surface temperatures (SSTs), and atmospheric circulation. During the oceanic summer season, June through September, OWS N lay in the steady trade wind flow of the northeast Pacific. Boundary layer air parcels, which pass through the location of N, are typically in transition from the solid stratus or stratocumulus of the North Pacific to trade cumulus that is characteristic of the subtropics. Cloud observations indicate that low-cloud amount is high, averaging 70%, despite the absence of a well-mixed boundary layer. Low-cloud type code 8, cumulus and stratocumulus with bases at different levels, is the most frequently reported cloud type at all hours of the day. These observations suggest that along the stratus to trade cumulus transition, high cloud amount can exist long after the b...

Collaboration


Dive into the Stephen A. Klein's collaboration.

Top Co-Authors

Avatar

Shaocheng Xie

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

James S. Boyle

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mark D. Zelinka

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Renata McCoy

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Robert Pincus

Cooperative Institute for Research in Environmental Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joel R. Norris

University of California

View shared research outputs
Top Co-Authors

Avatar

Richard T. Cederwall

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Yuying Zhang

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge