Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard T. Cummings is active.

Publication


Featured researches published by Richard T. Cummings.


Bioorganic & Medicinal Chemistry Letters | 2002

Photochemical preparation of a pyridone containing tetracycle: A jak protein kinase inhibitor

James E. Thompson; Rose M. Cubbon; Richard T. Cummings; Linda S. Wicker; Robert A. Frankshun; Barry R. Cunningham; Patricia M. Cameron; Peter T. Meinke; Nigel Liverton; Youmin Weng; Julie A. DeMartino

Jak3 is a protein tyrosine kinase that is associated with the shared gamma chain of receptors for cytokines IL2, IL4, IL7, IL9, and IL13. We have discovered that a pyridone-containing tetracycle (6) may be prepared from trisubstituted imidazole (5) in high yield by irradiation with >350 nm light. Compound 6 inhibits Jak3 with K(I)=5 nM; it also inhibits Jak family members Tyk2 and Jak2 with IC(50)=1 nM and murine Jak1with IC(50)=15 nM. Compound 6 was tested as an inhibitor of 21 other protein kinases; it inhibited these kinases with IC(50)s ranging from 130 nM to >10 microM. Compound 6 also blocks IL2 and IL4 dependent proliferation of CTLL cells and inhibits the phosphorylation of STAT5 (an in vivo substrate of the Jak family) as measured by Western blotting.


Journal of Biological Chemistry | 2007

Effects of pH and Low Density Lipoprotein (LDL) on PCSK9-dependent LDL Receptor Regulation

Timothy S. Fisher; Paola Lo Surdo; Shilpa Pandit; Marco Mattu; Joseph C. Santoro; Doug Wisniewski; Richard T. Cummings; Alessandra Calzetta; Rose M. Cubbon; Paul Fischer; Anil Tarachandani; Raffaele De Francesco; Samuel D. Wright; Carl P. Sparrow; Andrea Carfi; Ayesha Sitlani

Mutations within PCSK9 (proprotein convertase subtilisin/kexin type 9) are associated with dominant forms of familial hyper- and hypocholesterolemia. Although PCSK9 controls low density lipoprotein (LDL) receptor (LDLR) levels post-transcriptionally, several questions concerning its mode of action remain unanswered. We show that purified PCSK9 protein added to the medium of human endothelial kidney 293, HepG2, and Chinese hamster ovary cell lines decreases cellular LDL uptake in a dose-dependent manner. Using this cell-based assay of PCSK9 activity, we found that the relative potencies of several PCSK9 missense mutants (S127R and D374Y, associated with hypercholesterolemia, and R46L, associated with hypocholesterolemia) correlate with LDL cholesterol levels in humans carrying such mutations. Notably, we found that in vitro wild-type PCSK9 binds LDLR with an ∼150-fold higher affinity at an acidic endosomal pH (KD = 4.19 nm) compared with a neutral pH (KD = 628 nm). We also demonstrate that wild-type PCSK9 and mutants S127R and R46L are internalized by cells to similar levels, whereas D374Y is more efficiently internalized, consistent with their affinities for LDLR at neutral pH. Finally, we show that LDL diminishes PCSK9 binding to LDLR in vitro and partially inhibits the effects of secreted PCSK9 on LDLR degradation in cell culture. Together, the results of our biochemical and cell-based experiments suggest a model in which secreted PCSK9 binds to LDLR and directs the trafficking of LDLR to the lysosomes for degradation.


Biochemical Journal | 2003

Catalytic properties and inhibition of proline-specific dipeptidyl peptidases II, IV and VII

Barbara Leiting; KellyAnn D. Pryor; Joseph K. Wu; Frank Marsilio; Reshma A. Patel; Charles S. Craik; Jonathan A. Ellman; Richard T. Cummings; Nancy A. Thornberry

There is currently intense interest in the emerging group of proline-specific dipeptidases, and their roles in the regulation of biological processes. Dipeptidyl peptidase IV (DPP-IV) is involved in glucose metabolism by contributing to the regulation of glucagon family peptides and has emerged as a potential target for the treatment of metabolic diseases. Two other proline-specific dipeptidases, DPP-VII (also known as quiescent cell proline dipeptidase) and DPP-II, have unknown functions and have recently been suggested to be identical proteases based on a sequence comparison of human DPP-VII and rat DPP-II (78% identity) [Araki, Li, Yamamoto, Haneda, Nishi, Kikkawa and Ohkubo (2001) J. Biochem. 129, 279-288; Fukasawa, Fukasawa, Higaki, Shiina, Ohno, Ito, Otogoto and Ota (2001) Biochem. J. 353, 283-290]. To facilitate the identification of selective substrates and inhibitors for these enzymes, a complete biochemical profile of these enzymes was obtained. The pH profiles, substrate specificities as determined by positional scanning, Michaelis-Menten constants and inhibition profiles for DPP-VII and DPP-II were shown to be virtually identical, strongly supporting the hypothesis that they are the same protease. In addition, substrate specificities, catalytic constants and IC(50) values were shown to be markedly different from those of DPP-IV. Selective DPP-IV and DPP-VII substrates were identified and they can be used to design selective inhibitors and probe further into the biology of these enzymes.


Proceedings of the National Academy of Sciences of the United States of America | 2005

Anthrax lethal factor inhibition

W. L. Shoop; Yusheng Xiong; Judyann Wiltsie; Andrea Woods; Jian Guo; James V. Pivnichny; T. Felcetto; B. F. Michael; Alka Bansal; Richard T. Cummings; Barry R. Cunningham; A. M. Friedlander; Cameron M. Douglas; S. B. Patel; Douglas Wisniewski; G. Scapin; Scott P. Salowe; Dennis M. Zaller; Kevin T. Chapman; Edward M. Scolnick; Dennis M. Schmatz; Kenneth F. Bartizal; Malcolm Maccoss; Jeffrey D. Hermes

The primary virulence factor of Bacillus anthracis is a secreted zinc-dependent metalloprotease toxin known as lethal factor (LF) that is lethal to the host through disruption of signaling pathways, cell destruction, and circulatory shock. Inhibition of this proteolytic-based LF toxemia could be expected to provide therapeutic value in combination with an antibiotic during and immediately after an active anthrax infection. Herein is shown the crystal structure of an intimate complex between a hydroxamate, (2R)-2-[(4-fluoro-3-methylphenyl)sulfonylamino]-N-hydroxy-2-(tetrahydro-2H-pyran-4-yl)acetamide, and LF at the LF-active site. Most importantly, this molecular interaction between the hydroxamate and the LF active site resulted in (i) inhibited LF protease activity in an enzyme assay and protected macrophages against recombinant LF and protective antigen in a cell-based assay, (ii) 100% protection in a lethal mouse toxemia model against recombinant LF and protective antigen, (iii) ≈50% survival advantage to mice given a lethal challenge of B. anthracis Sterne vegetative cells and to rabbits given a lethal challenge of B. anthracis Ames spores and doubled the mean time to death in those that died in both species, and (iv) 100% protection against B. anthracis spore challenge when used in combination therapy with ciprofloxacin in a rabbit “point of no return” model for which ciprofloxacin alone provided 50% protection. These results indicate that a small molecule, hydroxamate LF inhibitor, as revealed herein, can ameliorate the toxemia characteristic of an active B. anthracis infection and could be a vital adjunct to our ability to combat anthrax.


Proceedings of the National Academy of Sciences of the United States of America | 2002

A peptide-based fluorescence resonance energy transfer assay for Bacillus anthracis lethal factor protease

Richard T. Cummings; Scott P. Salowe; Barry R. Cunningham; Judyann Wiltsie; Young Whan Park; Lisa M. Sonatore; Douglas Wisniewski; Cameron M. Douglas; Jeffrey D. Hermes; Edward M. Scolnick

A fluorescence resonance energy transfer assay has been developed for monitoring Bacillus anthracis lethal factor (LF) protease activity. A fluorogenic 16-mer peptide based on the known LF protease substrate MEK1 was synthesized and found to be cleaved by the enzyme at the anticipated site. Extension of this work to a fluorogenic 19-mer peptide, derived, in part, from a consensus sequence of known LF protease targets, produced a much better substrate, cleaving approximately 100 times more efficiently. This peptide sequence was modified further on resin to incorporate donor/quencher pairs to generate substrates for use in fluorescence resonance energy transfer-based appearance assays. All peptides cleaved at similar rates with signal/background ranging from 9–16 at 100% turnover. One of these substrates, denoted (Cou)Consensus(K(QSY-35)GG)-NH2, was selected for additional assay optimization. A plate-based assay requiring only low nanomolar levels of enzyme was developed for screening and inhibitor characterization.


Journal of Biological Chemistry | 2009

Structural and Biochemical Characterization of the Wild Type PCSK9-EGF(AB) Complex and Natural Familial Hypercholesterolemia Mutants

Matthew J. Bottomley; Agostino Cirillo; Laura Orsatti; Lionello Ruggeri; Timothy S. Fisher; Joseph C. Santoro; Richard T. Cummings; Rose M. Cubbon; Paola Lo Surdo; Alessandra Calzetta; Alessia Noto; Jennifer Baysarowich; Marco Mattu; Fabio Talamo; Raffaele De Francesco; Carl P. Sparrow; Ayesha Sitlani; Andrea Carfi

PCSK9 regulates low density lipoprotein receptor (LDLR) levels and consequently is a target for the prevention of atherosclerosis and coronary heart disease. Here we studied the interaction, of LDLR EGF(A/AB) repeats with PCSK9. We show that PCSK9 binds the EGF(AB) repeats in a pH-dependent manner. Although the PCSK9 C-terminal domain is not involved in LDLR binding, PCSK9 autocleavage is required. Moreover, we report the x-ray structure of the PCSK9ΔC-EGF(AB) complex at neutral pH. Compared with the low pH PCSK9-EGF(A) structure, the new structure revealed rearrangement of the EGF(A) His-306 side chain and disruption of the salt bridge with PCSK9 Asp-374, thus suggesting the basis for enhanced interaction at low pH. In addition, the structure of PCSK9ΔC bound to EGF(AB)H306Y, a mutant associated with familial hypercholesterolemia (FH), reveals that the Tyr-306 side chain forms a hydrogen bond with PCSK9 Asp-374, thus mimicking His-306 in the low pH conformation. Consistently, Tyr-306 confers increased affinity for PCSK9. Importantly, we found that although the EGF(AB)H306Y-PCSK9 interaction is pH-independent, LDLRH306Y binds PCSK9 50-fold better at low pH, suggesting that factors other than His-306 contribute to the pH dependence of PCSK9-LDLR binding. Further, we determined the structures of EGF(AB) bound to PCSK9ΔC containing the FH-associated D374Y and D374H mutations, revealing additional interactions with EGF(A) mediated by Tyr-374/His-374 and providing a rationale for their disease phenotypes. Finally, we report the inhibitory properties of EGF repeats in a cellular assay measuring LDL uptake.


Chemistry & Biology | 2014

EZH2 inhibitor efficacy in non-Hodgkin's lymphoma does not require suppression of H3K27 monomethylation.

William D. Bradley; Shilpi Arora; Jennifer Busby; Srividya Balasubramanian; Victor S. Gehling; Christopher G. Nasveschuk; Rishi G. Vaswani; Chih-Chi Yuan; Charlie Hatton; Feng Zhao; Kaylyn E. Williamson; Priyadarshini Iyer; Jacqui Mendez; Robert E. Campbell; Nico Cantone; Shivani Garapaty-Rao; James E. Audia; Andrew Simon Cook; Les A. Dakin; Brian K. Albrecht; Jean-Christophe Harmange; Danette L. Daniels; Richard T. Cummings; Barbara M. Bryant; Emmanuel Normant; Patrick Trojer

The histone lysine methyltransferase (MT) Enhancer of Zeste Homolog 2 (EZH2) is considered an oncogenic driver in a subset of germinal center B-cell-like diffuse large B cell lymphoma (GCB-DLBCL) and follicular lymphoma due to the presence of recurrent, monoallelic mutations in the EZH2 catalytic domain. These genomic data suggest that targeting the EZH2 MT activity is a valid therapeutic strategy for the treatment of lymphoma patients with EZH2 mutations. Here we report the identification of highly potent and selective EZH2 small molecule inhibitors, their validation by a cellular thermal shift assay, application across a large cell panel representing various non-Hodgkins lymphoma (NHL) subtypes, and their efficacy in EZH2mutant-containing GCB-DLBCL xenograft models. Surprisingly, our EZH2 inhibitors selectively affect the turnover of trimethylated, but not monomethylated histone H3 lysine 27 at pharmacologically relevant doses. Importantly, we find that these inhibitors are broadly efficacious also in NHL models with wild-type EZH2.


Nature Chemical Biology | 2016

An inhibitor of KDM5 demethylases reduces survival of drug-tolerant cancer cells

Maia Vinogradova; Victor S. Gehling; Amy Gustafson; Shilpi Arora; Charles Tindell; Catherine Wilson; Kaylyn E. Williamson; Gulfem D. Guler; Pranoti Gangurde; Wanda Manieri; Jennifer Busby; E. Megan Flynn; Fei Lan; Hyo-Jin Kim; Shobu Odate; Andrea G. Cochran; Yichin Liu; Matthew Wongchenko; Yibin Yang; Tommy K. Cheung; Tobias M. Maile; Ted Lau; Michael Costa; Ganapati V. Hegde; Erica Jackson; Robert M. Pitti; David Arnott; Christopher M. Bailey; Steve Bellon; Richard T. Cummings

The KDM5 family of histone demethylases catalyzes the demethylation of histone H3 on lysine 4 (H3K4) and is required for the survival of drug-tolerant persister cancer cells (DTPs). Here we report the discovery and characterization of the specific KDM5 inhibitor CPI-455. The crystal structure of KDM5A revealed the mechanism of inhibition of CPI-455 as well as the topological arrangements of protein domains that influence substrate binding. CPI-455 mediated KDM5 inhibition, elevated global levels of H3K4 trimethylation (H3K4me3) and decreased the number of DTPs in multiple cancer cell line models treated with standard chemotherapy or targeted agents. These findings show that pretreatment of cancer cells with a KDM5-specific inhibitor results in the ablation of a subpopulation of cancer cells that can serve as the founders for therapeutic relapse.


Journal of Biomolecular Screening | 2002

Development of Novel Assays for Proteolytic Enzymes Using Rhodamine-Based Fluorogenic Substrates

Stephan K. Grant; Joseph G. Sklar; Richard T. Cummings

Components within synthetic chemical and natural product extract libraries often interfere with fluorescence-based assays. Fluorescence interference can result when the intrinsic spectral properties of colored compounds overlap with the fluorescent probes. Typically, fluorescence-based protease assays use peptide amidomethylcoumarin derivatives as substrates. However, because many organic compounds absorb in the ultraviolet region, they can interfere with coumarin-based fluorescence assays. Red-shifted fluorescent dyes such as peptidyl rhodamine derivatives are useful because there is generally less interference from organic compounds outside the ultraviolet wavelengths. In this report, rhodamine-based fluorogenic substrates, such as bis-(Leu)2-Rhod110 and bis-(Ala-Pro)2-Rhod110, were developed for leucine aminopeptidase and dipeptidyl aminopeptidase. Novel, tandem rhodamine substrates such as Ala-Pro-Rhod110-Leu were designed with 2 protease cleavage sites and used to assay 2 proteases in a multiplex format. General endpoint high-throughput screening (HTS) assays were also developed for leucine aminopeptidase, dipeptidyl aminopeptidase, and trypsin that incorporated both amidomethylcoumarin and rhodamine-based fluorogenic substrates into a single screening format. These dual-substrate assays allowed for the successful screening of the LOPAC™ collection and natural product extracts despite high levels of fluorescence interference.


Journal of Lipid Research | 2008

Functional analysis of sites within PCSK9 responsible for hypercholesterolemia.

Shilpa Pandit; Doug Wisniewski; Joseph C. Santoro; Sookhee Ha; Vijayalakshmi Ramakrishnan; Rose M. Cubbon; Richard T. Cummings; Samuel D. Wright; Carl P. Sparrow; Ayesha Sitlani; Timothy S. Fisher

Mutations within proprotein convertase subtilisin/kexin type 9 (PCSK9) are associated with dominant forms of familial hypercholesterolemia. PCSK9 binds the LDL receptor (LDLR), and addition of PCSK9 to cells promotes degradation of LDLR. PCSK9 mutant proteins associated with hypercholesterolemia (S127R and D374Y) are more potent in decreasing LDL uptake than is wild-type PCSK9. To better understand the mechanism by which mutations at the Ser127 and Asp374 residues of PCSK9 influence PCSK9 function, a limited vertical scanning mutagenesis was performed at both sites. S127R and S127K proteins were more potent in decreasing LDL uptake than was wild-type PCSK9, and each D374 mutant tested was more potent in reducing LDL uptake when the proteins were added exogenously to cells. The potencies of D374 mutants in lowering LDL uptake correlated with their ability to interact with LDLR in vitro. Combining S127R and D374Y was also found to have an additive effect in enhancing PCSK9s ability to reduce LDL uptake. Modeling of PCSK9 S127 and D374 mutations indicates that mutations that enhance PCSK9 function stabilize or destabilize the protein, respectively. In conclusion, these results suggest a model in which mutations at Ser127 and Asp374 residues modulate PCSK9s ability to regulate LDLR function through distinct mechanisms.

Collaboration


Dive into the Richard T. Cummings's collaboration.

Researchain Logo
Decentralizing Knowledge