Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard van Wijk is active.

Publication


Featured researches published by Richard van Wijk.


Blood | 2008

Novel exon 12 mutations in the HIF2A gene associated with erythrocytosis.

Melanie J. Percy; Philip A. Beer; Gavin Campbell; Ad W. Dekker; Anthony R. Green; David Oscier; M. Glenn Rainey; Richard van Wijk; Marion Wood; Terence Lappin; Mary Frances McMullin; Frank S. Lee

Erythrocytosis can arise from deregulation of the erythropoietin (Epo) axis resulting from defects in the oxygen-sensing pathway. Epo synthesis is controlled by the hypoxia inducible factor (HIF) complex, composed of an alpha and a beta subunit. There are 2 main alpha subunits, HIF-1 alpha and HIF-2 alpha. Recently, a HIF-2 alpha Gly537Trp mutation was identified in a family with erythrocytosis. This raises the possibility of HIF2A mutations being associated with other cases of erythrocytosis. We now report a subsequent analysis of HIF2A in a cohort of 75 erythrocytosis patients and identify 4 additional patients with novel heterozygous Met535Val and Gly537Arg mutations. All patients presented at a young age with elevated serum Epo. Mutations at Gly-537 account for 4 of 5 HIF2A mutations associated with erythrocytosis. These findings support the importance of HIF-2 alpha in human Epo regulation and warrant investigation of HIF2A in patients with unexplained erythrocytosis.


Journal of Proteome Research | 2008

Highly efficient depletion strategy for the two most abundant erythrocyte soluble proteins improves proteome coverage dramatically.

Jeffrey H. Ringrose; Wouter W. van Solinge; Shabaz Mohammed; Martina C. O’Flaherty; Richard van Wijk; Albert J. R. Heck; Monique Slijper

In-depth human erythrocyte proteome studies are severely hampered by the presence of hemoglobin and carbonic anhydrase-1, which account for more than 98% of the total erythrocyte soluble protein content. We developed a specific depletion approach that resulted in a drastic increase in the number of identified proteins. This depletion technique is valuable for proteome studies of human erythrocyte disorders with unknown etiology and of tissue samples that contain blood.


Journal of Proteomics | 2010

Quantitative erythrocyte membrane proteome analysis with Blue-Native/SDS PAGE

Renske A. van Gestel; Wouter W. van Solinge; H.W.P. van der Toorn; Gert Rijksen; Albert J. R. Heck; Richard van Wijk; Monique Slijper

The erythrocyte membrane plays a pivotal role in erythrocyte functioning. Many membrane protein aberrations are known that result in hemolytic anemia, however, the origin of numerous disorders is not known to date. To extend the current set of diagnostic tools, we used a novel proteome-wide approach to quantitatively analyze membrane proteins of healthy donor and patient erythrocytes. Blue-native PAGE has proven to be a powerful tool for separation of membrane proteins and their complexes, but has hitherto not been applied to erythrocyte membranes to find biomarkers. Using this technique, we detected almost 150 protein spots, from which more than 500 proteins could be identified by LC-MS/MS. Further, we successfully assessed the potential of using CyDye labeling to quantify the membrane proteins. Our final goal was to determine if this approach is suited to detect protein level changes in disordered erythrocyte membranes, and we could successfully confirm that erythrocyte spectrin levels were dramatically decreased for a hemolytic anemia patient. This approach provides a new tool to detect potential biomarkers and can contribute to an improved understanding of the causes of erythrocyte membrane defects in patients suffering from hemolytic anemia.


Human Mutation | 2014

Genetic basis of Congenital Erythrocytosis mutation update and online databases

Celeste Bento; Melanie J. Percy; Betty Gardie; Tabita M. Maia; Richard van Wijk; Silverio Perrotta; Fulvio Della Ragione; Helena Almeida; Cédric Rossi; François Girodon; Maria Åström; Drorit Neumann; Susanne Schnittger; Britta Landin; Milen Minkov; Maria Luigia Randi; Stéphane Richard; Nicole Casadevall; William Vainchenker; Susana Rives; Sylvie Hermouet; M. Letícia Ribeiro; Mary Frances McMullin; Holger Cario; Aurélie Chauveau; Anne-Paule Gimenez-Roqueplo; Brigitte Bressac-de-Paillerets; Didem Altindirek; Felipe Lorenzo; Frédéric Lambert

Congenital erythrocytosis (CE), or congenital polycythemia, represents a rare and heterogeneous clinical entity. It is caused by deregulated red blood cell production where erythrocyte overproduction results in elevated hemoglobin and hematocrit levels. Primary congenital familial erythrocytosis is associated with low erythropoietin (Epo) levels and results from mutations in the Epo receptor gene (EPOR). Secondary CE arises from conditions causing tissue hypoxia and results in increased Epo production. These include hemoglobin variants with increased affinity for oxygen (HBB, HBA mutations), decreased production of 2,3‐bisphosphoglycerate due to BPGM mutations, or mutations in the genes involved in the hypoxia sensing pathway (VHL, EPAS1, and EGLN1). Depending on the affected gene, CE can be inherited either in an autosomal dominant or recessive mode, with sporadic cases arising de novo. Despite recent important discoveries in the molecular pathogenesis of CE, the molecular causes remain to be identified in about 70% of the patients. With the objective of collecting all the published and unpublished cases of CE the COST action MPN&MPNr‐Euronet developed a comprehensive Internet‐based database focusing on the registration of clinical history, hematological, biochemical, and molecular data (http://www.erythrocytosis.org/). In addition, unreported mutations are also curated in the corresponding Leiden Open Variation Database.


Clinical Chemistry | 2009

Management of Gene Promoter Mutations in Molecular Diagnostics

Karen M.K. de Vooght; Richard van Wijk; Wouter W. van Solinge

BACKGROUND Although promoter mutations are known to cause functionally important consequences for gene expression, promoter analysis is not a regular part of DNA diagnostics. CONTENT This review covers different important aspects of promoter mutation analysis and includes a proposed model procedure for studying promoter mutations. Characterization of a promoter sequence variation includes a comprehensive study of the literature and databases of human mutations and transcription factors. Phylogenetic footprinting is also used to evaluate the putative importance of the promoter region of interest. This in silico analysis is, in general, followed by in vitro functional assays, of which transient and stable transfection assays are considered the gold-standard methods. Electrophoretic mobility shift and supershift assays are used to identify trans-acting proteins that putatively interact with the promoter region of interest. Finally, chromatin immunoprecipitation assays are essential to confirm in vivo binding of these proteins to the promoter. SUMMARY Although promoter mutation analysis is complex, often laborious, and difficult to perform, it is an essential part of the diagnosis of disease-causing promoter mutations and improves our understanding of the role of transcriptional regulation in human disease. We recommend that routine laboratories and research groups specialized in gene promoter research cooperate to expand general knowledge and diagnosis of gene-promoter defects.


Frontiers in Physiology | 2013

Red blood cell vesiculation in hereditary hemolytic anemia

Amr Alaarg; Raymond M. Schiffelers; Wouter W. van Solinge; Richard van Wijk

Hereditary hemolytic anemia encompasses a heterogeneous group of anemias characterized by decreased red blood cell survival because of inherited membrane, enzyme, or hemoglobin disorders. Affected red blood cells are more fragile, less deformable, and more susceptible to shear stress and oxidative damage, and show increased vesiculation. Red blood cells, as essentially all cells, constitutively release phospholipid extracellular vesicles in vivo and in vitro in a process known as vesiculation. These extracellular vesicles comprise a heterogeneous group of vesicles of different sizes and intracellular origins. They are described in literature as exosomes if they originate from multi-vesicular bodies, or as microvesicles when formed by a one-step budding process directly from the plasma membrane. Extracellular vesicles contain a multitude of bioactive molecules that are implicated in intercellular communication and in different biological and pathophysiological processes. Mature red blood cells release in principle only microvesicles. In hereditary hemolytic anemias, the underlying molecular defect affects and determines red blood cell vesiculation, resulting in shedding microvesicles of different compositions and concentrations. Despite extensive research into red blood cell biochemistry and physiology, little is known about red cell deformability and vesiculation in hereditary hemolytic anemias, and the associated pathophysiological role is incompletely assessed. In this review, we discuss recent progress in understanding extracellular vesicles biology, with focus on red blood cell vesiculation. Also, we review recent scientific findings on the molecular defects of hereditary hemolytic anemias, and their correlation with red blood cell deformability and vesiculation. Integrating bio-analytical findings on abnormalities of red blood cells and their microvesicles will be critical for a better understanding of the pathophysiology of hereditary hemolytic anemias.


PLOS Genetics | 2014

Ribosomal protein mutations induce autophagy through S6 kinase inhibition of the insulin pathway

Harry F. G. Heijnen; Richard van Wijk; Tamara C. Pereboom; Yvonne J. Goos; Cor Seinen; Brigitte A. van Oirschot; Rowie van Dooren; Marc Gastou; Rachel H. Giles; Wouter W. van Solinge; Taco W. Kuijpers; Hanna T. Gazda; Marc Bierings; Lydie Da Costa; Alyson W. MacInnes

Mutations affecting the ribosome lead to several diseases known as ribosomopathies, with phenotypes that include growth defects, cytopenia, and bone marrow failure. Diamond-Blackfan anemia (DBA), for example, is a pure red cell aplasia linked to the mutation of ribosomal protein (RP) genes. Here we show the knock-down of the DBA-linked RPS19 gene induces the cellular self-digestion process of autophagy, a pathway critical for proper hematopoiesis. We also observe an increase of autophagy in cells derived from DBA patients, in CD34+ erythrocyte progenitor cells with RPS19 knock down, in the red blood cells of zebrafish embryos with RP-deficiency, and in cells from patients with Shwachman-Diamond syndrome (SDS). The loss of RPs in all these models results in a marked increase in S6 kinase phosphorylation that we find is triggered by an increase in reactive oxygen species (ROS). We show that this increase in S6 kinase phosphorylation inhibits the insulin pathway and AKT phosphorylation activity through a mechanism reminiscent of insulin resistance. While stimulating RP-deficient cells with insulin reduces autophagy, antioxidant treatment reduces S6 kinase phosphorylation, autophagy, and stabilization of the p53 tumor suppressor. Our data suggest that RP loss promotes the aberrant activation of both S6 kinase and p53 by increasing intracellular ROS levels. The deregulation of these signaling pathways is likely playing a major role in the pathophysiology of ribosomopathies.


American Journal of Hematology | 2014

X‐linked sideroblastic anemia due to ALAS2 intron 1 enhancer element GATA‐binding site mutations

Dean R. Campagna; Charlotte I. de Bie; Klaus Schmitz-Abe; Marion Sweeney; Anoop K. Sendamarai; Paul J. Schmidt; Matthew M. Heeney; Helger G. Yntema; Caroline Kannengiesser; Bernard Grandchamp; Charlotte M. Niemeyer; Nine V.A.M. Knoers; Sonia Swart; Gordon Marron; Richard van Wijk; Reinier Raymakers; Alison May; Kyriacos Markianos; Sylvia S. Bottomley; Dorine W. Swinkels; Mark D. Fleming

X‐linked sideroblastic anemia (XLSA) is the most common form of congenital sideroblastic anemia. In affected males, it is uniformly associated with partial loss‐of‐function missense mutations in the erythroid‐specific heme biosynthesis protein 5‐aminolevulinate synthase 2 (ALAS2). Here, we report five families with XLSA owing to mutations in a GATA transcription factor binding site located in a transcriptional enhancer element in intron 1 of the ALAS2 gene. As such, this study defines a new class of mutations that should be evaluated in patients undergoing genetic testing for a suspected diagnosis of XLSA. Am. J. Hematol. 89:315–319, 2014.


Human Mutation | 2009

Fifteen novel mutations in PKLR associated with pyruvate kinase (PK) deficiency: Structural implications of amino acid substitutions in PK†

Richard van Wijk; Eric G. Huizinga; Annet C. van Wesel; Brigitte A. van Oirschot; Michael A. Hadders; Wouter W. van Solinge

Pyruvate kinase (PK) deficiency is a rare disease but an important cause of hereditary nonspherocytic hemolytic anemia. The disease is caused by mutations in the PKLR gene and shows a marked variability in clinical expression. We report on the molecular characterization of 38 PK‐deficient patients from 35 unrelated families. Twenty‐nine different PKLR mutations were detected, of which 15 are reported here for the first time. Two novel deletions are reported: c.142_159del18 is the largest in‐frame deletion described thus far and predicts the loss of six consecutive amino acids (p.Thr48_Thr53del) in the N‐terminal domain of red blood cell PK. The other deletion removes nearly 1.5 kb of genomic DNA sequence (c.1618+37_2064del1477) and is one of a few large deletional mutants in PKLR. In addition, 13 novel point mutations were identified: one nonsense mutant, p.Arg488X, and 12 missense mutations, predicting the substitution of a single amino acid: p.Arg40Trp, p.Leu73Pro, p.Ile90Asn, p.Gly111Arg, p.Ala154Thr, p.Arg163Leu, p.Gly165Val, p.Leu272Val, p.Ile310Asn, p.Val320Leu, p.Gly358Glu, and p.Leu374Pro. We used the three‐dimensional (3D) structure of recombinant human tetrameric PK to evaluate the protein structural context of the affected residues. In addition, in selected patients red blood cell PK antigen levels were measured by enzyme‐linked immunosorbent assay (ELISA). Collectively, the results provided us with a rationale for the observed enzyme deficiency and contribute to both a better understanding of the genotype‐to‐phenotype correlation in PK deficiency as well as the enzymes structure and function. Hum Mutat 0, 1–8, 2008.


British Journal of Haematology | 2004

Ex vivo analysis of aberrant splicing induced by two donor site mutations in PKLR of a patient with severe pyruvate kinase deficiency

Richard van Wijk; Annet C. van Wesel; Adri A. M. Thomas; Gert Rijksen; Wouter W. van Solinge

Two single‐nucleotide substitutions in PKLR constituted the molecular basis underlying pyruvate kinase (PK) deficiency in a patient with severe haemolytic anaemia. One novel mutation, IVS5+1G>A, abolished the intron 5 donor splice site. The other mutation, c.1436G>A, altered the intron 10 donor splice site consensus sequence and, moreover, encoded an R479H substitution. We studied the effects on PKLR pre‐mRNA processing, using ex vivo‐produced nucleated erythroid cells from the patient. Abolition of the intron 5 splice site initiated two events in the majority of transcripts: skipping of exon 5 or, surprisingly, simultaneous skipping of exon 5 and 6 (Δ5,6). Subcellular localization of transcripts suggested that no functional protein was produced by the IVS5+1A allele. The unusual Δ5,6 transcript suggests that efficient inclusion of exon 6 in wild‐type PKLR mRNA depends on the presence of splice‐enhancing elements in exon 5. The c.1436G>A mutation caused skipping of exon 10 but was mainly associated with a severe reduction in transcripts although these were, in general, normally processed. Accordingly, low amounts of PK were detected in nucleated erythroid cells of the patient, thus correlating with the patients PK‐deficient phenotype. Finally, several low‐abundant transcripts were detected that represent the first examples of ‘leaky‐splicing’ in PKLR.

Collaboration


Dive into the Richard van Wijk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paola Bianchi

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elisa Fermo

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge