Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raymond M. Schiffelers is active.

Publication


Featured researches published by Raymond M. Schiffelers.


PLOS Biology | 2012

Vesiclepedia: A Compendium for Extracellular Vesicles with Continuous Community Annotation

Hina Kalra; Richard J. Simpson; Hong Ji; Elena Aikawa; Peter Altevogt; Philip W. Askenase; Vincent C. Bond; Francesc E. Borràs; Xandra O. Breakefield; Vivian Budnik; Edit I. Buzás; Giovanni Camussi; Aled Clayton; Emanuele Cocucci; Juan M. Falcon-Perez; Susanne Gabrielsson; Yong Song Gho; Dwijendra K. Gupta; H. C. Harsha; An Hendrix; Andrew F. Hill; Jameel M. Inal; Guido Jenster; Eva-Maria Krämer-Albers; Sai Kiang Lim; Alicia Llorente; Jan Lötvall; Antonio Marcilla; Lucia Mincheva-Nilsson; Irina Nazarenko

Vesiclepedia is a community-annotated compendium of molecular data on extracellular vesicles.


Biomaterials | 2014

Curcumin nanoformulations: A review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment

Ornchuma Naksuriya; Siriporn Okonogi; Raymond M. Schiffelers; Wim E. Hennink

Curcumin, a natural yellow phenolic compound, is present in many kinds of herbs, particularly in Curcuma longa Linn. (turmeric). It is a natural antioxidant and has shown many pharmacological activities such as anti-inflammatory, anti-microbial, anti-cancer, and anti-Alzheimer in both preclinical and clinical studies. Moreover, curcumin has hepatoprotective, nephroprotective, cardioprotective, neuroprotective, hypoglycemic, antirheumatic, and antidiabetic activities and it also suppresses thrombosis and protects against myocardial infarction. Particularly, curcumin has demonstrated efficacy as an anticancer agent, but a limiting factor is its extremely low aqueous solubility which hampers its use as therapeutic agent. Therefore, many technologies have been developed and applied to overcome this limitation. In this review, we summarize the recent works on the design and development of nano-sized delivery systems for curcumin, including liposomes, polymeric nanoparticles and micelles, conjugates, peptide carriers, cyclodextrins, solid dispersions, lipid nanoparticles and emulsions. Efficacy studies of curcumin nanoformulations using cancer cell lines and in vivo models as well as up-to-date human clinical trials are also discussed.


Journal of Controlled Release | 2003

Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin

Raymond M. Schiffelers; Gerben A. Koning; Timo L.M. ten Hagen; Marcel H.A.M. Fens; Astrid J. Schraa; Adrienne P.C.A. Janssen; Robbert J. Kok; Grietje Molema; Gert Storm

Angiogenesis is a key process in the growth and metastasis of a tumor. Disrupting this process is considered a promising treatment strategy. Therefore, a drug delivery system specifically aiming at angiogenic tumor endothelial cells was developed. Alpha v beta 3-integrins are overexpressed on actively proliferating endothelium and represent a possible target. For this, RGD-peptides with affinity for this integrin were coupled to the distal end of poly(ethylene glycol)-coated long-circulating liposomes (LCL) to obtain a stable long-circulating drug delivery system functioning as a platform for multivalent interaction with alpha v beta 3-integrins. The results show that cyclic RGD-peptide-modified LCL exhibited increased binding to endothelial cells in vitro. Moreover, intravital microscopy demonstrated a specific interaction of these liposomes with tumor vasculature, a characteristic not observed for LCL. RGD-LCL encapsulating doxorubicin inhibited tumor growth in a doxorubicin-insensitive murine C26 colon carcinoma model, whereas doxorubicin in LCL failed to decelerate tumor growth. In conclusion, coupling of RGD to LCL redirected these liposomes to angiogenic endothelial cells in vitro and in vivo. RGD-LCL containing doxorubicin showed superior efficacy over non-targeted LCL in inhibiting C26 doxorubicin-insensitive tumor outgrowth. Likely, these RGD-LCL-doxorubicin antitumor effects are brought about through direct effects on tumor endothelial cells.


BioMed Research International | 2006

Targeted Delivery of siRNA

Sabrina Oliveira; Gert Storm; Raymond M. Schiffelers

Therapeutic application of siRNA requires delivery to the correct intracellular location, to interact with the RNAi machinery within the target cell, within the target tissue responsible for the pathology. Each of these levels of targeting poses a significant barrier. To overcome these barriers several strategies have been developed, such as chemical modifications of siRNA, viral nucleic acid delivery systems, and nonviral nucleic acid delivery systems. Here, we discuss progress that has been made to improve targeted delivery of siRNA in vivo for each of these strategies.


American Journal of Pathology | 2004

Inhibition of Ocular Angiogenesis by siRNA Targeting Vascular Endothelial Growth Factor Pathway Genes : Therapeutic Strategy for Herpetic Stromal Keratitis

Bumseok Kim; Qingquan Tang; Partha S. Biswas; Jun Xu; Raymond M. Schiffelers; Frank Y. Xie; Aslam M. Ansari; Puthupparampil V. Scaria; Martin C. Woodle; Patrick Y. Lu; Barry T. Rouse

Ocular neovascularization often results in vision impairment. Frequently vascular endothelial cell growth factors (VEGFs) are mainly responsible for the pathological neovascularization as in the case in neovascularization induced by CpG oligodeoxynucleotides and herpes simplex virus infection in this report. siRNAs targeting either VEGFA, VEGFR1, VEGFR2, or a mix of the three were shown to significantly inhibit neovascularization induced by CpG when given locally or systemically. The efficacy of systemic administration was facilitated by the use of a polymer delivery vehicle. Additional experiments showed a significant inhibitory effect of the siRNAs mix when given either locally or systemically in vehicle against herpes simplex virus-induced angiogenesis as well as against lesions of stromal keratitis. These results indicate that the use of VEGF pathway-specific siRNAs represents a useful therapy against neovascularization-related eye diseases.


Cell | 2015

In Vivo Imaging Reveals Extracellular Vesicle-Mediated Phenocopying of Metastatic Behavior

Anoek Zomer; Carrie Maynard; Frederik Verweij; Alwin Kamermans; Ronny Schäfer; Evelyne Beerling; Raymond M. Schiffelers; Elzo de Wit; Jordi Berenguer; Saskia I. J. Ellenbroek; Thomas Wurdinger; Dirk Michiel Pegtel; Jacco van Rheenen

Summary Most cancer cells release heterogeneous populations of extracellular vesicles (EVs) containing proteins, lipids, and nucleic acids. In vitro experiments showed that EV uptake can lead to transfer of functional mRNA and altered cellular behavior. However, similar in vivo experiments remain challenging because cells that take up EVs cannot be discriminated from non-EV-receiving cells. Here, we used the Cre-LoxP system to directly identify tumor cells that take up EVs in vivo. We show that EVs released by malignant tumor cells are taken up by less malignant tumor cells located within the same and within distant tumors and that these EVs carry mRNAs involved in migration and metastasis. By intravital imaging, we show that the less malignant tumor cells that take up EVs display enhanced migratory behavior and metastatic capacity. We postulate that tumor cells locally and systemically share molecules carried by EVs in vivo and that this affects cellular behavior.


Journal of extracellular vesicles | 2012

Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes.

Olivier G. de Jong; Marianne C. Verhaar; Yong Chen; Pieter Vader; Hendrik Gremmels; George Posthuma; Raymond M. Schiffelers; Marjan Gucek; Bas W. M. van Balkom

Background: The healthy vascular endothelium, which forms the barrier between blood and the surrounding tissues, is known to efficiently respond to stress signals like hypoxia and inflammation by adaptation of cellular physiology and the secretion of (soluble) growth factors and cytokines. Exosomes are potent mediators of intercellular communication. Their content consists of RNA and proteins from the cell of origin, and thus depends on the condition of these cells at the time of exosome biogenesis. It has been suggested that exosomes protect their target cells from cellular stress through the transfer of RNA and proteins. We hypothesized that endothelium-derived exosomes are involved in the endothelial response to cellular stress, and that exosome RNA and protein content reflect the effects of cellular stress induced by hypoxia, inflammation or hyperglycemia. Methods: We exposed cultured endothelial cells to different types of cellular stress (hypoxia, TNF-α-induced activation, high glucose and mannose concentrations) and compared mRNA and protein content of exosomes produced by these cells by microarray analysis and a quantitative proteomics approach. Results: We identified 1,354 proteins and 1,992 mRNAs in endothelial cell-derived exosomes. Several proteins and mRNAs showed altered abundances after exposure of their producing cells to cellular stress, which were confirmed by immunoblot or qPCR analysis. Conclusion: Our data show that hypoxia and endothelial activation are reflected in RNA and protein exosome composition, and that exposure to high sugar concentrations alters exosome protein composition only to a minor extend, and does not affect exosome RNA composition. To access the supplementary material to this article: Tables SI-SIV and Figures S1-2, please see Supplementary files under Article Tools online.


International Journal of Nanomedicine | 2012

Exosome mimetics: a novel class of drug delivery systems

Sander A.A. Kooijmans; Pieter Vader; Susan M. van Dommelen; Wouter W. van Solinge; Raymond M. Schiffelers

The identification of extracellular phospholipid vesicles as conveyors of cellular information has created excitement in the field of drug delivery. Biological therapeutics, including short interfering RNA and recombinant proteins, are prone to degradation, have limited ability to cross biological membranes, and may elicit immune responses. Therefore, delivery systems for such drugs are under intensive investigation. Exploiting extracellular vesicles as carriers for biological therapeutics is a promising strategy to overcome these issues and to achieve efficient delivery to the cytosol of target cells. Exosomes are a well studied class of extracellular vesicles known to carry proteins and nucleic acids, making them especially suitable for such strategies. However, the considerable complexity and the related high chance of off-target effects of these carriers are major barriers for translation to the clinic. Given that it is well possible that not all components of exosomes are required for their proper functioning, an alternative strategy would be to mimic these vesicles synthetically. By assembly of liposomes harboring only crucial components of natural exosomes, functional exosome mimetics may be created. The low complexity and use of well characterized components strongly increase the pharmaceutical acceptability of such systems. However, exosomal components that would be required for the assembly of functional exosome mimetics remain to be identified. This review provides insights into the composition and functional properties of exosomes, and focuses on components which could be used to enhance the drug delivery properties of exosome mimetics.


Biomaterials | 2010

Core-crosslinked polymeric micelles with controlled release of covalently entrapped doxorubicin

Marina Talelli; Maryam Iman; Amir K. Varkouhi; Cristianne J.F. Rijcken; Raymond M. Schiffelers; Tomáš Etrych; Karel Ulbrich; Cornelus F. van Nostrum; Twan Lammers; Gert Storm; Wim E. Hennink

Doxorubicin (DOX) is clinically applied in cancer therapy, but its use is associated with dose limiting severe side effects. Core-crosslinked biodegradable polymeric micelles composed of poly(ethylene glycol)-b-poly[N-(2-hydroxypropyl) methacrylamide-lactate] (mPEG-b-p(HPMAm-Lac(n))) diblock copolymers have shown prolonged circulation in the blood stream upon intravenous administration and enhanced tumor accumulation through the enhanced permeation and retention (EPR) effect. However a (physically) entrapped anticancer drug (paclitaxel) was previously shown to be rapidly eliminated from the circulation, likely because the drug was insufficiently retained in the micelles. To fully exploit the EPR effect for drug targeting, a DOX methacrylamide derivative (DOX-MA) was covalently incorporated into the micellar core by free radical polymerization. The structure of the doxorubicin derivative is susceptible to pH-sensitive hydrolysis, enabling controlled release of the drug in acidic conditions (in either the intratumoral environment and/or the endosomal vesicles). 30-40% w/w of the added drug was covalently entrapped, and the micelles with covalently entrapped DOX had an average diameter of 80 nm. The entire drug payload was released within 24 h incubation at pH 5 and 37 degrees C, whereas only around 5% release was observed at pH 7.4. DOX micelles showed higher cytotoxicity in B16F10 and OVCAR-3 cells compared to DOX-MA, likely due to cellular uptake of the micelles via endocytosis and intracellular drug release in the acidic organelles. The micelles showed better anti-tumor activity than free DOX in mice bearing B16F10 melanoma carcinoma. The results presented in this paper show that mPEG-b-p(HPMAm-Lac(n)) polymeric micelles with covalently entrapped doxorubicin is a system highly promising for the targeted delivery of cytostatic agents.


Journal of Controlled Release | 2012

Microvesicles and exosomes: Opportunities for cell-derived membrane vesicles in drug delivery

Susan M. van Dommelen; Pieter Vader; Samira Lakhal; Sander A.A. Kooijmans; Wouter W. van Solinge; Matthew J.A. Wood; Raymond M. Schiffelers

Cell-derived membrane vesicles (CMVs) are endogenous carriers transporting proteins and nucleic acids between cells. They appear to play an important role in many disease processes, most notably inflammation and cancer, where their efficient functional delivery of biological cargo seems to contribute to the disease progress. CMVs encompass a variety of submicron vesicular structures that include exosomes and shedding vesicles. The lipids, proteins, mRNA and microRNA (miRNA) delivered by these vesicles change the phenotype of the receiving cells. CMVs have created excitement in the drug delivery field, because they appear to have multiple advantages over current artificial drug delivery systems. Two approaches to exploit CMVs for delivery of exogenous therapeutic cargoes in vivo are currently considered. One approach is based on engineering of natural CMVs in order to target certain cell types using CMVs loaded with therapeutic compounds. In the second approach, essential characteristics of CMVs are being used to design nano-scaled drug delivery systems. Although a number of limiting factors in the clinical translation of the exciting research findings so far exist, both approaches are promising for the development of a potentially novel generation of drug carriers based on CMVs.

Collaboration


Dive into the Raymond M. Schiffelers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Grietje Molema

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge