Richard W. Burry
Ohio State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Richard W. Burry.
Journal of Histochemistry and Cytochemistry | 2000
Richard W. Burry
Immunocytochemistry is used for antibody localization of proteins in cells and tissues. The specificity of the results depends on two independent criteria: the specificity of the antibody and of the method used. The antibody specificity is best determined by immunoblot and or immunoprecipitation. Absorption of the antibody with a protein does not determine that the antibody would have bound to the same protein in the tissue, and therefore is not a good control for antibody specificity. The specificity of the method is best determined by both a negative control, replacing the primary antibody with serum, and a positive control, using the antibody with cells known to contain the protein. With the increasing use of immunocytochemistry, it is important to be aware of the appropriate controls needed to show specificity of the labeling.
Journal of Histochemistry and Cytochemistry | 2011
Richard W. Burry
Immunocytochemistry is a highly productive method in biomedical research used to identify proteins and other macromolecules in tissues and cells. Control samples are required to show label localization is correct, but the understanding and use of immunocytochemistry controls have been inconsistent. A new classification of immunocytochemical controls is proposed that will help in understanding this most important component of the experiment. The three types of controls required for immunocytochemistry are primary antibody controls that show the specificity of the primary antibody binding to the antigen, secondary antibody controls that show the label is specific to the primary antibody, and label controls that show the labeling is the result of the label added and not the result of endogenous labeling. Publications containing immunocytochemical results must give details of how these controls were performed.
Journal of Histochemistry and Cytochemistry | 1992
Richard W. Burry; D D Vandré; D M Hayes
In pre-embedding EM immunocytochemistry with gold probes, the gold must be small enough to penetrate through cell membranes treated with mild detergents. Antibodies labeled with small gold probes (1-1.4 nm) are too small to be resolved in thin sections but can be seen if they are silver-enhanced after the gold has bound to the antigens in the cells. We investigated several aspects of gum arabic-silver lactate-hydroquinone enhancement solution (Danscher solution) by examining gold-conjugated antibodies embedded in agar, sectioned on a vibrotome, and enhanced with different solutions. The rate of silver enhancement was optimized in 50% gum arabic and 200 mM HEPES buffer, pH 5.8. We also examined chemicals used as developers and found that N-propyl gallate (NPG) gave a more uniform development than the routinely used hydroquinone (HQ). The diameter of the silver-enhanced particles after incubation in osmium tetratoxide (OSO4) decreased somewhat with longer incubation time and higher percentages, but the density (number per unit area) of silver-enhanced particles was little changed. The loss of silver-enhanced particle diameter was reduced by lowering the concentration of OSO4 to 0.1%. Comparison of commercial small gold probes showed that NPG enhancement of Nanogold gave more uniform particle size and a better correlation between enhancement time and particle density. When this procedure was applied to cell cultures with monoclonal antibodies, the silver-enhanced particles were similar to those in the agar sections. When free-floating tissue sections were used, longer silver enhancement times were needed to obtain similarly sized particles. This new NPG-silver-enhancement procedure offers a reliable and easy method to localize proteins in cultured cells and tissue sections by pre-embedding electron microscopic immunocytochemistry.
Brain Research | 1988
Douglas A. Kniss; Richard W. Burry
An in vitro model was used to study the cytokinetics of astroglial cells derived from neonatal rat cerebellum. Confluent monolayers of astrocytes (85% astroglial as assessed by GFAP immunoreactivity) were subcultured at low cell density and after 2-3 days growth were rendered quiescent by shifting them to low serum medium (0.25%) for several days. Cells could be stimulated to re-enter the proliferative compartment by challenging them with high concentrations of fetal bovine serum (5-10% FBS) or fibroblast growth factor (FGF). FGF added alone at a concentration of 25 ng/ml caused quiescent astrocytes to re-enter the cell cycle nearly as effectively as 5-10% serum. Moreover, when FGF (25 ng/ml) was combined with 0.5% serum there was a potentiation of the mitogenic effect seen with FGF alone. This synchronization scheme is an important tool for continuing studies of the growth factor and hormonal requirements for astroglial cell proliferation and differentiation.
Journal of Neurochemistry | 2002
Kim D. Anderson; Melissa Morin; Andrea Beckel-Mitchener; Charlotte Mobarak; Rachael L. Neve; Henry Furneaux; Richard W. Burry; Nora I. Perrone-Bizzozero
Abstract: We have previously shown that the RNA‐binding protein HuD binds to a regulatory element in the growth‐associated protein (GAP)‐43 mRNA and that this interaction involves its first two RNA recognition motifs (RRMs). In this study, we investigated the functional significance of this interaction by overexpression of human HuD protein (pcHuD) or its truncated form lacking the third RRM (pcHuD I+II) in PC12 cells. Morphological analysis revealed that pcHuD cells extended short neurites containing GAP‐43‐positive growth cones in the absence of nerve growth factor (NGF). These processes also contained tubulin and F‐actin filaments but were not stained with antibodies against neurofilament M protein. In correlation with this phenotype, pcHuD cells contained higher levels of GAP‐43 without changes in levels of other NGF‐induced proteins, such as SNAP‐25 and tau. In mRNA decay studies, HuD stabilized the GAP‐43 mRNA, whereas HuD I+II did not have any effect either on GAP‐43 mRNA stability or on the levels of GAP‐43 protein. Likewise, pcHuD I+II cells showed no spontaneous neurite outgrowth and deficient outgrowth in response to NGF. Our results indicate that HuD is sufficient to increase GAP‐43 gene expression and neurite outgrowth in the absence of NGF and that the third RRM in the protein is critical for this function.
Journal of Histochemistry and Cytochemistry | 1990
James J. Lah; Diane M. Hayes; Richard W. Burry
The availability of 1-nm gold particles permits the use of a particulate label with standard pre-embedding electron microscopic immunocytochemical techniques. We have employed these particles to localize a synaptic vesicle protein, p65, and a growth-associated protein, GAP-43, in neuron cell cultures. To be detected by standard transmission electron microscopy, these ultra-small gold particles must be enlarged. We have applied a commercially available silver development kit (IntenseM), the method of Danscher, and a neutral pH development procedure which we developed to effect this enlargement. Although IntenseM permits development with good preservation of morphology, it is limited by lack of reproducibility and by variability of final particle size. The method of Danscher provides well-controlled and reproducible enlargement, but is limited with respect to preservation of ultrastructural details. The neutral pH development procedure reproducibly enlarges gold particles with superior preservation of morphology. The use of this development procedure in conjunction with 1-nm gold probes should permit precise ultrastructural localization of a variety of intracellular antigens.
Journal of Immunology | 2011
Alena Cristina Jaime-Ramirez; Bethany L. Mundy-Bosse; SriVidya Kondadasula; Natalie B. Jones; Julie M. Roda; Aruna Mani; Robin Parihar; Volodymyr Karpa; Tracey L. Papenfuss; Krista LaPerle; Elizabeth Biller; Amy Lehman; Abhik Ray Chaudhury; David Jarjoura; Richard W. Burry; William E. Carson
The antitumor effects of therapeutic mAbs may depend on immune effector cells that express FcRs for IgG. IL-12 is a cytokine that stimulates IFN-γ production from NK cells and T cells. We hypothesized that coadministration of IL-12 with a murine anti-HER2/neu mAb (4D5) would enhance the FcR-dependent immune mechanisms that contribute to its antitumor activity. Thrice-weekly therapy with IL-12 (1 μg) and 4D5 (1 mg/kg) significantly suppressed the growth of a murine colon adenocarcinoma that was engineered to express human HER2 (CT-26HER2/neu) in BALB/c mice compared with the result of therapy with IL-12, 4D5, or PBS alone. Combination therapy was associated with increased circulating levels of IFN-γ, monokine induced by IFN-γ, and RANTES. Experiments with IFN-γ–deficient mice demonstrated that this cytokine was necessary for the observed antitumor effects of therapy with IL-12 plus 4D5. Immune cell depletion experiments showed that NK cells (but not CD4+ or CD8+ T cells) mediated the antitumor effects of this treatment combination. Therapy of HER2/neu-positive tumors with trastuzumab plus IL-12 induced tumor necrosis but did not affect tumor proliferation, apoptosis, vascularity, or lymphocyte infiltration. In vitro experiments with CT-26HER2/neu tumor cells revealed that IFN-γ induced an intracellular signal but did not inhibit cellular proliferation or induce apoptosis. Taken together, these data suggest that tumor regression in response to trastuzumab plus IL-12 is mediated through NK cell IFN-γ production and provide a rationale for the coadministration of NK cell-activating cytokines with therapeutic mAbs.
Blood | 2008
Sri Vidya Kondadasula; Julie M. Roda; Robin Parihar; Jianhua Yu; Amy Lehman; Michael A. Caligiuri; Susheela Tridandapani; Richard W. Burry; William E. Carson
Natural killer (NK) cells express an activating receptor for the Fc portion of IgG (FcgammaRIIIa) that mediates interferon (IFN)-gamma production in response to antibody (Ab)-coated targets. We have previously demonstrated that NK cells activated with interleukin-12 (IL-12) in the presence of immobilized IgG secrete 10-fold or more higher levels of IFN-gamma as compared with stimulation with either agent alone. We examined the intracellular signaling pathways responsible for this synergistic IFN-gamma production. NK cells costimulated via the FcR and the IL-12 receptor (IL-12R) exhibited enhanced levels of activated STAT4 and Syk as compared with NK cells stimulated through either receptor alone. Extracellular signal-regulated kinase (ERK) was also synergistically activated under these conditions. Studies with specific chemical inhibitors revealed that the activation of ERK was dependent on the activation of PI3-K, whose activation was dependent on Syk, and that sequential activation of these molecules was required for NK cell IFN-gamma production in response to FcR and IL-12 stimulation. Retroviral transfection of ERK1 into primary human NK cells substantially increased IFN-gamma production in response to immobilized IgG and IL-12, while transfection of human NK cells with a dominant-negative ERK1 abrogated IFN-gamma production. Confocal microscopy and cellular fractionation experiments revealed that FcgammaRIIIa and the IL-12R colocalized to areas of lipid raft microdomains in response to costimulation with IgG and IL-12. Chemical disruption of lipid rafts inhibited ERK signaling in response to costimulation and significantly inhibited IFN-gamma production. These data suggest that dual recruitment of FcgammaRIIIa and the IL-12R to lipid raft microdomains allows for enhanced activation of downstream signaling events that lead to IFN-gamma production.
Journal of Histochemistry and Cytochemistry | 1995
H G Gilerovitch; G A Bishop; J S King; Richard W. Burry
Silver enhancement of small gold particles can be used with pre-embedding immunocytochemistry to analyze the distribution of label over cell organelles. We have developed a method that improves tissue morphology, has good penetration of reagents, and allows greater control of silver enhancement of 1.4-nm gold. In this study we analyzed the distribution of glutamic acid decarboxylase (GAD), a synthetic enzyme for the inhibitory neurotransmitter gamma-aminobutyric acid (GABA), in the cerebellar nuclei of the mouse. Pre-embedding immunocytochemistry was carried out on brain sections fixed with high concentrations of glutaraldehyde and sodium metabisulfite. After incubations with a monoclonal antibody to GAD and a 1.4-nm NanoGold-labeled secondary antibody, sections were silver-enhanced with N-propyl gallate as a reducing agent and MES as a new buffer system. In the cerebellar nuclei, GAD label was specifically localized in axon terminals over clusters of synaptic vesicles. These terminals formed axosomatic and axodendritic contacts. The majority of GAD-labeled terminals had cytological characteristics indicating their origin from Purkinje cells, which are known to contain GAD.
Journal of Neuroscience Research | 1998
Richard W. Burry
Nerve growth factor (NGF) stimulation of PC12 cells activates signaling pathways leading to new protein expression and growth of neurites. In wild type PC12 cells, incubation with phorbol ester (PMA) will activate protein kinase C (PKC) leading to the expression of many proteins necessary for neurite outgrowth, but this activation of PKC alone will not stimulate growth of long neurites. Here, we show in the subline of PC12‐N09, which lacks NGF‐stimulated growth of long neurites, that a brief incubation with PKC activators, PMA or bryostatin 1 (bryostatin), before NGF incubation, stimulates the growth of long neurites. However, incubation in the reverse order is ineffective. A short incubation with PMA or bryostatin followed by NGF induced tyrosine phosphorylation of MAP kinase (MAPK), which is of the same duration as that induced by NGF alone. Thus, PMA preincubation did not increase the length NGF activation of MAPK. Twenty‐four hr after incubation with PMA or bryostatin, PKC isoforms were downregulated but PKC isoforms δ‐, and ϵ‐ were still present. In these cells chronically treated with either PMA or bryostatin to downregulate PKC, NGF incubation preceded by PMA preincubation still led to long neurite outgrowth. These results suggest that a PMA or bryostatin incubation followed by NGF activates PKC isoforms δ‐, and ϵ‐leading to outgrowth of long neurites, and that the PMA signaling is independent of the MAPK pathway. J. Neurosci. Res. 53:214–222, 1998.