Richard W. Costello
Johns Hopkins University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Richard W. Costello.
Journal of Clinical Investigation | 1997
Christopher M. Evans; A.D. Fryer; David B. Jacoby; Gerald J. Gleich; Richard W. Costello
In antigen-challenged guinea pigs there is recruitment of eosinophils into the lungs and to airway nerves, decreased function of inhibitory M2 muscarinic autoreceptors on parasympathetic nerves in the lungs, and airway hyperresponsiveness. A rabbit antibody to guinea pig eosinophil major basic protein was used to determine whether M2 muscarinic receptor dysfunction, and the subsequent hyperresponsiveness, are due to antagonism of the M2 receptor by eosinophil major basic protein. Guinea pigs were sensitized, challenged with ovalbumin and hyperresponsiveness, and M2 receptor function tested 24 h later with the muscarinic agonist pilocarpine. Antigen-challenged guinea pigs were hyperresponsive to electrical stimulation of the vagus nerves compared with controls. Likewise, loss of M2 receptor function was demonstrated since the agonist pilocarpine inhibited vagally-induced bronchoconstriction in control but not challenged animals. Pretreatment with rabbit antibody to guinea pig eosinophil major basic protein prevented hyperresponsiveness, and protected M2 receptor function in the antigen-challenged animals without inhibiting eosinophil accumulation in the lungs or around the nerves. Thus, hyperresponsiveness is a result of inhibition of neuronal M2 muscarinic receptor function by eosinophil major basic protein in antigen-challenged guinea pigs.
Journal of Clinical Investigation | 1997
A.D. Fryer; Richard W. Costello; Bethany L. Yost; Roy R. Lobb; Thomas F. Tedder; Douglas A. Steeber; Bruce S. Bochner
Antigen challenge of sensitized guinea pigs decreases the function of inhibitory M2 muscarinic autoreceptors on parasympathetic nerves in the lung, potentiating vagally induced bronchoconstriction. Loss of M2 receptor function is associated with the accumulation of eosinophils around airway nerves. To determine whether recruitment of eosinophils via expression of VLA-4 and L-selectin is critical for loss of M2 receptor function, guinea pigs were pretreated with monoclonal antibodies to VLA-4 (HP1/2) or L-selectin (LAM1-116). Guinea pigs were sensitized and challenged with ovalbumin, and M2 receptor function was tested. In controls, blockade of neuronal M2 muscarinic receptors by gallamine potentiated vagally induced bronchoconstriction, while in challenged animals this effect was markedly reduced, confirming M2 receptor dysfunction. Pretreatment with HP1/2, but not with LAM1-116, protected M2 receptor function in the antigen-challenged animals. HP1/2 also inhibited the development of hyperresponsiveness, and selectively inhibited accumulation of eosinophils in the lungs as measured by lavage and histology. Thus, inhibition of eosinophil influx into the lungs protects the function of M2 muscarinic receptors, and in so doing, prevents hyperresponsiveness in antigen-challenged guinea pigs.
American Journal of Physiology-lung Cellular and Molecular Physiology | 1999
Richard W. Costello; Christopher M. Evans; Bethany L. Yost; Kristen E. Belmonte; Gerald J. Gleich; David B. Jacoby; A.D. Fryer
M2 muscarinic receptors limit acetylcholine release from the pulmonary parasympathetic nerves. M2 receptors are dysfunctional in antigen-challenged guinea pigs, causing increased vagally mediated bronchoconstriction. Dysfunction of these M2 receptors is due to eosinophil major basic protein, which is an antagonist for M2 receptors. Histamine-induced bronchoconstriction is composed of a vagal reflex in addition to its direct effect on airway smooth muscle. Because hyperreactivity to histamine is seen in antigen-challenged animals, we hypothesized that hyperreactivity to histamine may be due to increased vagally mediated bronchoconstriction caused by dysfunction of M2 receptors. In anesthetized, antigen-challenged guinea pigs, histamine-induced bronchoconstriction was greater than that in control guinea pigs. After vagotomy or atropine treatment, the response to histamine in antigen-challenged animals was the same as that in control animals. In antigen-challenged animals, blockade of eosinophil influx into the airways or neutralization of eosinophil major basic protein prevented the development of hyperreactivity to histamine. Thus hyperreactivity to histamine in antigen-challenged guinea pigs is vagally mediated and dependent on eosinophil major basic protein.M2muscarinic receptors limit acetylcholine release from the pulmonary parasympathetic nerves. M2receptors are dysfunctional in antigen-challenged guinea pigs, causing increased vagally mediated bronchoconstriction. Dysfunction of these M2 receptors is due to eosinophil major basic protein, which is an antagonist for M2 receptors. Histamine-induced bronchoconstriction is composed of a vagal reflex in addition to its direct effect on airway smooth muscle. Because hyperreactivity to histamine is seen in antigen-challenged animals, we hypothesized that hyperreactivity to histamine may be due to increased vagally mediated bronchoconstriction caused by dysfunction of M2 receptors. In anesthetized, antigen-challenged guinea pigs, histamine-induced bronchoconstriction was greater than that in control guinea pigs. After vagotomy or atropine treatment, the response to histamine in antigen-challenged animals was the same as that in control animals. In antigen-challenged animals, blockade of eosinophil influx into the airways or neutralization of eosinophil major basic protein prevented the development of hyperreactivity to histamine. Thus hyperreactivity to histamine in antigen-challenged guinea pigs is vagally mediated and dependent on eosinophil major basic protein.
British Journal of Pharmacology | 1998
Richard W. Costello; A.D. Fryer; Kristen E. Belmonte; David B. Jacoby
The role of tachykinin NK1 receptors in the recruitment of eosinophils to airway nerves, loss of inhibitory neuronal M2 muscarinic receptor function and the development of vagal hyperreactivity was tested in antigen‐challenged guinea‐pigs. In anaesthetized guinea‐pigs, the muscarinic agonist, pilocarpine (1–100 μg kg−1, i.v), inhibited vagally induced bronchoconstriction, in control, but not in antigen‐challenged guinea‐pigs 24 h after antigen challenge. This indicates normal function of neuronal M2 muscarinic receptors in controls and loss of neuronal M2 receptor function in challenged guinea‐pigs. Pretreatment of sensitized guinea‐pigs with the NK1 receptor antagonists CP99994 (4 mg kg−1, i.p.), SR140333 (1 mg kg−1, s.c.) or CP96345 (15 mg kg−1, i.p.) before antigen challenge, prevented M2 receptor dysfunction. Neither administration of the NK1 antagonists after antigen challenge, nor pretreatment with an NK2 receptor antagonist, MEN10376 (5 μmol kg−1, i.p.), before antigen challenge, prevented M2 receptor dysfunction. Electrical stimulation of the vagus nerves caused a frequency‐dependent (2–15 Hz, 10 V, 0.2 ms for 5 s) bronchoconstriction that was significantly increased following antigen challenge. Pretreatment with the NK1 receptor antagonists CP99994 or SR140333 before challenge prevented this increase. Histamine (1–20 nmol kg−1, i.v.) caused a dose‐dependent bronchoconstriction, which was vagally mediated, and was significantly increased in antigen challenged guinea‐pigs compared to controls. Pretreatment of sensitized animals with CP99994 before challenge prevented the increase in histamine‐induced reactivity. Bronchoalveolar lavage and histological studies showed that after antigen challenge significant numbers of eosinophils accumulated in the airways and around airway nerves. This eosinophilia was not altered by pretreatment with the NK1 receptor antagonist CP99994. These data indicate that pretreatment of antigen‐sensitized guinea‐pigs with NK1, but not with NK2 receptor antagonists before antigen challenge prevented the development of hyperreactivity by protecting neuronal M2 receptor function. NK1 receptor antagonists do not inhibit eosinophil accumulation around airway nerves.
American Journal of Physiology-lung Cellular and Molecular Physiology | 1997
Richard W. Costello; Brian Schofield; Gail M. Kephart; Gerald J. Gleich; David B. Jacoby; A.D. Fryer
Journal of Applied Physiology | 1998
Kristen E. Belmonte; A.D. Fryer; Richard W. Costello
Histology and Histopathology | 2000
Richard W. Costello; David B. Jacoby; Gerard J. Gleich; A.D. Fryer
American Journal of Physiology-lung Cellular and Molecular Physiology | 2000
Christopher M. Evans; Kristen E. Belmonte; Richard W. Costello; David B. Jacoby; Gerald J. Gleich; A.D. Fryer
Respiratory Medicine | 2002
B.L Laube; Barbara Curbow; Richard W. Costello; Sheila T. Fitzgerald
Lung biology in health and disease | 2000
A.D. Fryer; David B. Jacoby; Richard W. Costello