Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard W. Hofstetter is active.

Publication


Featured researches published by Richard W. Hofstetter.


Journal of Chemical Ecology | 2013

Microbial Volatile Emissions as Insect Semiochemicals

Thomas S. Davis; Tawni L. Crippen; Richard W. Hofstetter; Jeffery K. Tomberlin

We provide a synthesis of the literature describing biochemical interactions between microorganisms and insects by way of microbial volatile organic compound (MVOC) production. We evaluated the functionality and ecological context of MVOC signals, and explored important metabolic pathways involved in MVOC production. The cosmopolitan distribution of microorganisms creates a context for frequent, and frequently overlooked, insect responses to microbial emissions. There are numerous instances of MVOCs being closely associated with insect feeding behaviors, but some MVOCs are also powerful repellants. Emissions from microorganisms in situ may signal aspects of habitat suitability or potential exposure to entomopathogens. In some ecosystems, bacterial or fungal volatiles can also incite insect aggregations, or MVOCs can resemble sexual pheromones that elicit mating and oviposition behaviors from responding insects. A single microorganism or MVOC can have different effects on insect behaviors, especially across species, ontogenies, and habitats. There appears to be a multipartite basis for insect responses to MVOCs, and complex tritrophic interactions can result from the production of MVOCs. Many biochemical pathways for behaviorally active volatile production by microbial species are conserved across large taxonomic groupings of microorganisms. In addition, there is substantial functional redundancy in MVOCs: fungal tissues commonly produce polyketides and short-chain alcohols, whereas bacterial tissues tend to be more commonly associated with amines and pyrazines. We hypothesize that insect olfactory responses to emissions from microorganisms inhabiting their sensory environment are much more common than currently recognized, and that these signals represent evolutionarily reliable infochemicals. Insect chemoreception of microbial volatiles may contribute to the formation of neutral, beneficial, or even harmful symbioses and provide considerable insight into the evolution of insect behavioral responses to volatile compounds.


Oecologia | 2006

Antagonisms, mutualisms and commensalisms affect outbreak dynamics of the southern pine beetle

Richard W. Hofstetter; James T. Cronin; Kier D. Klepzig; John C. Moser; Matthew P. Ayres

Feedback from community interactions involving mutualisms are a rarely explored mechanism for generating complex population dynamics. We examined the effects of two linked mutualisms on the population dynamics of a beetle that exhibits outbreak dynamics. One mutualism involves an obligate association between the bark beetle, Dendroctonus frontalis and two mycangial fungi. The second mutualism involves Tarsonemus mites that are phoretic on D. frontalis (“commensal”), and a blue-staining fungus, Ophiostoma minus. The presence of O. minus reduces beetle larval survival (“antagonistic”) by outcompeting beetle-mutualistic fungi within trees yet supports mite populations by acting as a nutritional mutualist. These linked interactions potentially create an interaction system with the form of an endogenous negative feedback loop. We address four hypotheses: (1) Direct negative feedback: Beetles directly increase the abundance of O. minus, which reduces per capita reproduction of beetles. (2) Indirect negative feedback: Beetles indirectly increase mite abundance, which increases O. minus, which decreases beetle reproduction. (3) The effect of O. minus on beetles depends on mites, but mite abundance is independent of beetle abundance. (4) The effect of O. minus on beetles is independent of beetle and mite abundance. High Tarsonemus and O. minus abundances were strongly correlated with the decline and eventual local extinction of beetle populations. Manipulation experiments revealed strong negative effects of O. minus on beetles, but falsified the hypothesis that horizontal transmission of O. minus generates negative feedback. Surveys of beetle populations revealed that reproductive rates of Tarsonemus, O. minus, and beetles covaried in a manner consistent with strong indirect interactions between organisms. Co-occurrence of mutualisms embedded within a community may have stabilizing effects if both mutualisms limit each other. However, delays and/or non-linearities in the interaction systems may result in large population fluctuations.


Microbial Ecology | 2011

Presence and diversity of Streptomyces in Dendroctonus and sympatric bark beetle galleries across North America.

Jiri Hulcr; Aaron S. Adams; Kenneth F. Raffa; Richard W. Hofstetter; Kier D. Klepzig; Cameron R. Currie

Recent studies have revealed several examples of intimate associations between insects and Actinobacteria, including the Southern Pine Beetle Dendroctonus frontalis and the Spruce Beetle Dendroctonus rufipennis. Here, we surveyed Streptomyces Actinobacteria co-occurring with 10 species of Dendroctonus bark beetles across the United States, using both phylogenetic and community ecology approaches. From these 10 species, and 19 other scolytine beetles that occur in the same trees, we obtained 154 Streptomyces-like isolates and generated 16S sequences from 134 of those. Confirmed 16S sequences of Streptomyces were binned into 36 distinct strains using a threshold of 0.2% sequence divergence. The 16S rDNA phylogeny of all isolates does not correlate with the distribution of strains among beetle species, localities, or parts of the beetles or their galleries. However, we identified three Streptomyces strains occurring repeatedly on Dendroctonus beetles and in their galleries. Identity of these isolates was corroborated using a house-keeping gene sequence (efTu). These strains are not confined to a certain species of beetle, locality, or part of the beetle or their galleries. However, their role as residents in the woodboring insect niche is supported by the repeated association of their 16S and efTu from across the continent, and also having been reported in studies of other subcortical insects.


Environmental Entomology | 2006

Seasonal Dynamics of Mites and Fungi and Their Interaction with Southern Pine Beetle

Richard W. Hofstetter; Kier D. Klepzig; John C. Moser; Matthew P. Ayres

Abstract We evaluated whether Dendroctonus frontalis Zimmermann populations were influenced by nontrophic interactions involving commensal mites, their mutualistic bluestain fungus Ophiostoma minus (Hedgc.) H. and P. Sydow, and beetle-mutualistic mycangial fungi. We tested for effects of delayed, nonlinear, or positive feedback from O. minus and mites on D. frontalis population growth. We predicted that (1) high mite densities have demographic consequences for beetles by influencing the prevalence of O. minus and antagonistic interactions between O. minus and mycangial fungi, and (2) inter-relations and abundances of mites and fungi differentially vary throughout the year in a seasonally variable climate. Surveys of D. frontalis populations revealed that temporal and spatial patterns in abundance of mites and their mutualistic fungus, O. minus were inversely related with beetle population growth. Negative demographic effects of O. minus on D. frontalis were nonlinear, only affecting beetle per capita reproduction when fungi colonized >35% of phloem habitat. Mite abundance was strongly correlated with O. minus and was an important driving force in promoting bluestain prevalence within trees. Spring abundances of mites and the prevalence of O. minus during D. frontalis infestation formation were strong predictors of beetle population decline later that year. The two mutualistic fungi associated with D. frontalis cycled seasonally but did not seem to influence beetle population dynamics.


Agricultural and Forest Entomology | 2006

Attack preference of Ips pini on Pinus ponderosa in northern Arizona: tree size and bole position

Thomas E. Kolb; N. Guerard; Richard W. Hofstetter; Michael R. Wagner

1 The present study investigated the influence of tree size and bole position on selection of ponderosa pines (Pinus ponderosa Dougl. ex Laws.) by Ips pini Say (Coleoptera: Curculionidae: Scolytinae) in a northern Arizona forest. Ips pini were attracted to lower and upper bole positions with pheromone lures, and the number of attacks counted. In addition, tree phloem and bark thickness, resin flow in response to wounding and characteristics of tree water and carbon relations were all measured.


Microbial Ecology | 2011

Interactions Between the Yeast Ogataea pini and Filamentous Fungi Associated with the Western Pine Beetle

Thomas S. Davis; Richard W. Hofstetter; Jeffrey T. Foster; Nathaniel E. Foote; Paul Keim

Ecologically important microbes other than filamentous fungi can be housed within the fungal-transport structures (mycangia) of Dendroctonus bark beetles. The yeast Ogataea pini (Saccharomycetales: Saccharomycetaceae) was isolated from the mycangia of western pine beetle (Dendroctonus brevicomis) populations in northern Arizona (USA) with a frequency of 56%. We performed a series of in vitro assays to test whether volatile organic compounds produced by O. pini affected radial growth rates of mutualistic and antagonistic species of filamentous fungi that are commonly found in association with the beetle including Entomocorticium sp. B, Ophiostoma minus, Beauvaria bassiana, and an Aspergillus sp. We determined the compounds O. pini produced when grown on 2% malt extract agar using a gas chromatography/mass spectrometry (GC/MS) analysis of headspace volatiles. Volatiles produced by O. pini on artificial media significantly enhanced the growth of the mutualistic Entomocorticium sp. B, and inhibited growth of the entomopathogenic fungus B. bassiana. GC/MS revealed that O. pini produced ethanol, carbon disulfide (CS2), and Δ-3-carene in headspace. The results of these studies implicate O. pini as an important component in D. brevicomis community ecology, and we introduce multiple hypotheses for future tests of the effects of yeasts in the symbiont assemblages associated with Dendroctonus bark beetles.


Journal of Applied Entomology | 2008

Synergistic effects of α-pinene and exo-brevicomin on pine bark beetles and associated insects in Arizona

Richard W. Hofstetter; Z. Chen; M. L. Gaylord; Joel D. McMillin; Michael R. Wagner

The southern pine beetle (Dendroctonus frontalis) and western pine beetle (Dendroctonus brevicomis) cause significant mortality to pines in the southern and western United States. The effectiveness of commercial lures at capturing these bark beetles in Arizona has not been tested and may vary from other regions of their distribution. We conducted experiments using baited Lindgren funnel traps to investigate (i) if D. frontalis is more attracted to the standard commercial lure for D. brevicomis (frontalin + exo‐brevicomin + myrcene) than the D. frontalis lure (frontalin + terpene blend), (ii) whether replacement of myrcene with α‐pinene changes trap catches of Dendroctonus and associated insects, and (iii) whether the attraction to these lures varies across the geographical range of ponderosa pine forests throughout Arizona. In 2005, we tested various combinations of frontalin, exo‐brevicomin, myrcene and α‐pinene to D. frontalis, D. brevicomis and associated species. Dendroctonus frontalis, D. brevicomis and the predator Temnochila chlorodia were most attracted to lures with exo‐brevicomin. The replacement of the myrcene component with α‐pinene in the D. brevicomis lure resulted in the capture of twice as many bark beetles and Elacatis beetles. However, T. chlorodia did not differentiate between monoterpenes. In 2006, traps were set up in 11 locations around Arizona to test the relative attraction of lure combinations. In 9 out 11 locations, the D. brevicomis lure with α‐pinene was more attractive than the lure with myrcene or a terpene blend. These results suggest that the D. brevicomis lure with α‐pinene rather than myrcene is more effective lure to capture D. brevicomis and D. frontalis in Arizona. However, geographical variation in attractiveness to lures is evident even within this region of the beetles’ distributions. Differential attraction of Dendroctonus and their predators to these lures suggests potential use in field trapping and control programmes.


Environmental Entomology | 2008

Influence of temperature on spring flight initiation for southwestern ponderosa pine bark beetles (Coleoptera: Curculionidae, Scolytinae).

M. L. Gaylord; Kelly K. Williams; Richard W. Hofstetter; Joel D. McMillin; Tom DeGomez; Michael R. Wagner

Abstract Determination of temperature requirements for many economically important insects is a cornerstone of pest management. For bark beetles (Coleoptera: Curculionidae, Scolytinae), this information can facilitate timing of management strategies. Our goals were to determine temperature predictors for flight initiation of three species of Ips bark beetles, five species of Dendroctonus bark beetles, and two genera of bark beetle predators, Enoclerus spp. (Coleoptera: Cleridae) and Temnochila chlorodia (Mannerheim) (Coleoptera: Ostomidae), in ponderosa pine forests of northcentral Arizona. We quantified beetle flight activity using data loggers and pheromone-baited funnel traps at 18 sites over 4 yr. Ambient air temperature was monitored using temperature data loggers located in close proximity to funnel traps. We analyzed degree-day accumulation and differences between minimum, average, and maximum ambient temperature for the week before and week of first beetle capture to calculate flight temperature thresholds. Degree-day accumulation was not a good predictor for initiation of beetle flight. For all species analyzed other than D. adjunctus Blandford, beetles were captured in traps only when springtime temperatures exceeded 15.0°C. D. adjunctus was collected when maximum temperatures reached only 14.5°C. Once initial flights had begun, beetles were often captured when maximum ambient air temperatures were below initial threshold temperatures. Maximum and average air temperatures were a better predictor for beetle flight initiation than minimum temperature. We establish a temperature range for effective monitoring of bark beetles and their predators, and we discuss the implications of our results under climate change scenarios.


Bark Beetles#R##N#Biology and Ecology of Native and Invasive Species | 2015

Symbiotic Associations of Bark Beetles

Richard W. Hofstetter; Jamie Dinkins-Bookwalter; Thomas S. Davis; Kier D. Klepzig

A vast community of organisms occurs on and within bark beetles and bark beetle-infested trees. The large diversity of symbiotic species covers a breadth of functional roles that are often redundant or substitutable. Symbiotic associations can be facultative or obligatory, and vary from antagonistic to mutualistic depending on the context at which the interactions occurs. Most symbiotic organisms are phoretic, and thus are transferred from tree to tree by bark beetles or other arthropods. Symbionts influence bark beetle communication, reproduction, nutrition and population dynamics, as well as tri-trophic interactions, competition among species, and host-tree utilization by bark beetles. Taxa considered symbiotic with bark beetles include fungi, bacteria, viruses, algae, mites, protozoa, and nematodes, among others. Interactions among symbionts are often mediated by host plant chemistry, abiotic factors such as temperature, or other phoretic organisms. Some of the symbionts, such as fungi, amplify our view of bark beetles as pests, as they may be tree pathogens or influence the coloration and texture of wood or plant products. However, some symbionts may also provide a solution to bark beetle population outbreaks and range expansion, as some symbiotic species are harmful to bark beetles and could be used as biological control agents.


Environmental Entomology | 2009

Effects of gallery density and species ratio on the fitness and fecundity of two sympatric bark beetles (Coleoptera: Curculionidae).

T. S. Davis; Richard W. Hofstetter

ABSTRACT Interspecific interactions among tree-killing bark beetle species may have ecologically important consequences on beetle population dynamics. Using two tree-killing beetle species (Dendroctonus brevicomis and D. frontalis), we performed observational and experimental studies to verify cross-attraction and co-colonization under field conditions in northern Arizona and test the effects of gallery density and species ratio on response variables of average gallery length, offspring size (progeny fitness), and offspring production per centimeter gallery (fecundity). Our results show that both D. frontalis and D. brevicomis aggregate to pheromones synthesized de novo by D. brevicomis under field conditions and that galleries of both D. brevicomis and D. frontalis occurred together in the same region of a single host tree with significant frequency. In experimental manipulations of species ratios, the presence of conspecific beetles in the gallery environment strongly mediated fecundity, but D. frontalis was the only species that suffered negative impacts from the presence of heterospecific beetles in the gallery environment. Interactions did not result in any apparent fitness effects for progeny of either species, which suggests that multispecies aggregations and co-colonization may be a dominant ecological strategy in the region and result in niche sharing.

Collaboration


Dive into the Richard W. Hofstetter's collaboration.

Top Co-Authors

Avatar

Kier D. Klepzig

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John C. Moser

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Kenneth F. Raffa

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Joel D. McMillin

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Thomas S. Davis

Northern Arizona University

View shared research outputs
Top Co-Authors

Avatar

Brian T. Sullivan

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Steven Munson

United States Department of Agriculture

View shared research outputs
Researchain Logo
Decentralizing Knowledge