Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richelle Hemendinger is active.

Publication


Featured researches published by Richelle Hemendinger.


Cell Transplantation | 2003

The testicular-derived Sertoli cell: cellular immunoscience to enable transplantation.

Dwaine F. Emerich; Richelle Hemendinger; Craig Halberstadt

There is a renewed enthusiasm for the potential of cellular transplantation as a therapy for numerous clinical disorders. The revived interest is largely due to the unprecedented success of the “Edmonton protocol,” which produced a 100% cure rate for type I diabetics following the transplantation of human islet allografts together with a modified immunosuppressive regimen. While these data provide a clear and unequivocal demonstration that transplantation is a viable treatment strategy, the shortage of suitable donor tissue together with the debilitating consequences of lifelong immunosuppression necessitate a concerted effort to develop novel means to enable transplantation on a widespread basis. This review outlines the use of Sertoli cells to provide local immunoprotection to cografted discordant cells, including those from xenogeneic sources. Sertoli cells are normally found in the testes where one of their functions is to provide local immunologic protection to developing germ cells. Isolated Sertoli cells 1) engraft and self-protect when transplanted into allogeneic and xenogeneic environments, 2) protect cografted allogeneic and xenogeneic cells from immune destruction, 3) protect islet grafts to reverse diabetes in animal models, 4) enable survival and function of cografted foreign dopaminergic neurons in rodent models of Parkinsons disease (PD), and 5) promote regeneration of damaged striatal dopaminergic circuitry in those same PD models. These benefits are discussed in the context of several potential underlying biological mechanisms. While the majority of work to date has focused on Sertoli cells to facilitate transplantation for diabetes and PD, the generalized ability of these unique cells to potently suppress the local immune environment opens additional clinical possibilities.


Journal of Biological Chemistry | 2009

The Neuromediator Glutamate, through Specific Substrate Interactions, Enhances Mitochondrial ATP Production and Reactive Oxygen Species Generation in Nonsynaptic Brain Mitochondria

Alexander Panov; Peter Schönfeld; Sergey Dikalov; Richelle Hemendinger; Herbert L. Bonkovsky; Benjamin Rix Brooks

The finding that upon neuronal activation glutamate is transported postsynaptically from synaptic clefts and increased lactate availability for neurons suggest that brain mitochondria (BM) utilize a mixture of substrates, namely pyruvate, glutamate, and the tricarboxylic acid cycle metabolites. We studied how glutamate affected oxidative phosphorylation and reactive oxygen species (ROS) production in rat BM oxidizing pyruvate + malate or succinate. Simultaneous oxidation of glutamate + pyruvate + malate increased state 3 and uncoupled respiration by 52 and 71%, respectively. The state 4 ROS generation increased 100% over BM oxidizing pyruvate + malate and 900% over that of BM oxidizing glutamate + malate. Up to 70% of ROS generation was associated with reverse electron transport. These effects of pyruvate + glutamate + malate were observed only with BM and not with liver or heart mitochondria. The effects of glutamate + pyruvate on succinate-supported respiration and ROS generation were not organ-specific and depended only on whether mitochondria were isolated with or without bovine serum albumin. With the non-bovine serum albumin brain and heart mitochondria oxidizing succinate, the addition of pyruvate and glutamate abrogated inhibition of Complex II by oxaloacetate. We conclude that (i) during neuronal activation, simultaneous oxidation of glutamate + pyruvate temporarily enhances neuronal mitochondrial ATP production, and (ii) intrinsic inhibition of Complex II by oxaloacetate is an inherent mechanism that protects against ROS generation during reverse electron transport.


Cell Transplantation | 2002

Identification of a specific Sertoli cell marker, Sox9, for use in transplantation.

Richelle Hemendinger; Paul F. Gores; Blacksten L; Harley; Craig Halberstadt

The immunoprivileged environment of the testes was first described in the 1930s, and the Sertoli cell was later identified as the main cell type responsible for this phenomenon. Recent work has examined the possibility of recreating this immunoprivileged environment at heterotopic sites using isolated Sertoli cells. These studies have focused on protection of pancreatic islets and neuronal cells from immune destruction in the hopes of reversing type I diabetes and Parkinsons disease. The absence of a definitive marker for identifying Sertoli cells at the transplant site has been an obstacle to this research. The current study examines the presence of a nuclear transcription factor, Sox9, which is preferentially expressed in Sertoli cells. Syngeneic Lewis rat Sertoli cells were transplanted into the renal subcapsular space and a subcutaneous site in Lewis female rats and examined histologically 21 days later. In addition, porcine Sertoli cells were transplanted into the renal subcapsular space in female SCID mice. Control testes and the transplant sites were examined immunohistochemically using an antibody to Sox9. The results from the study demonstrate that Sox9 expression is restricted to the Sertoli cells of the neonatal rat and porcine testis, indicating high homology between species. In addition, Sox9 expression was also observed in the testicular-like tubules that formed in both syngeneic and xenogeneic heterotopic transplants in rats and SCID mice. The Sox9 expression was restricted to the regions where Sertoli cells would be found in the native testis. These results suggest that the Sox9 protein is a useful marker in identifying Sertoli cells in heterotopic transplants in a manner similar to insulin as a marker for pancreatic islets.


Neurobiology of Disease | 2011

Respiration and ROS production in brain and spinal cord mitochondria of transgenic rats with mutant G93a Cu/Zn-superoxide dismutase gene.

Alexander Panov; Nataliya Kubalik; Natalia Zinchenko; Richelle Hemendinger; Sergey Dikalov; Herbert L. Bonkovsky

UNLABELLED Mitochondrial dysfunction is involved in the pathogenesis of motor neuron degeneration in the G93A mutant transgenic (tgmSOD1) animal model of ALS. However, it is unknown whether mitochondriopathy is a primary or secondary event. We isolated brain (BM) and spinal cord (SCM) mitochondria from 2 month old presymptomatic tgmSOD1 rats and studied respiration and generation of reactive oxygen species (ROS) using a new metabolic paradigm (Panov et al., Am. J. Physiol., Regul. Integr. Comp. Physiol., 2011). The yields of BM and SCM from tgmSOD1 rats were 27% and 58% lower than normal rats (WT). The rates of the State 3 and State 3U respiration of tgBM and tgSCM were normal with glutamate+pyruvate+malate as substrates but were inhibited with pyruvate+malate in tgBM and glutamate+malate in tgSCM. In tgSCM the State 4 respiration with all substrates was significantly (1.5-2 fold) increased as compared with WT-SCM. Western blot analysis showed that tgSCM had lower contents of complexes III (-60%) and IV (-35%), and the presence of mutated SOD1 protein in both tgBM and tgSCM. With glutamate+pyruvate+malate or succinate+glutamate+pyruvate+malate as substrates, tgBM and tgSCM generated 5-7 fold more ROS than normal mitochondria, and tgSCM generated two times more ROS than tgBM. We show that the major damaging ROS species in tgmSOD1 animals is H(2)O(2). It is known that mutated SOD1, damaged by H(2)O(2), associates with mitochondria, and we suggest that this further increases production of H(2)O(2). We also show that the total tissue calcium content remained normal in the brain but was diminished by 26% in the spinal cord of presymptomatic tgmSOD1 rats. CONCLUSION In tgSCM abnormally high rates of ROS generation, associated with reverse electron transport, result in accelerated mitochondriopathy, and the Ca(2+)-dependent excitotoxic death of motor neurons. Thus mitochondrial dysfunction is a key early element in pathogenesis of motor neuron degeneration in tgmSOD1 rats.


Neurotoxicity Research | 2008

Huperzine a provides neuroprotection against several cell death inducers usingin vitro model systems of motor neuron cell death

Richelle Hemendinger; Edward J. Armstrong; Rafal Persinski; Julianne Todd; Jean-Luc Mougeot; Franklin Volvovitz; Jeffrey Rosenfeld

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease resulting from the progressive loss of motor neurons in the spinal cord and brain. To date, clinically effective neuroprotective agents have not been available. The current study demonstrates for the first time that huperzine A, a potential neuroprotective agent, has the ability to protect a motor neuron-like cell line and motor neurons in spinal cord organotypic cultures from toxin-induced cell death. The neuroblastoma-spinal motor neuron fusion cell line, NSC34 and rat spinal cord organotypic cultures (OTC) were exposed to cell death inducers for 24 h or 14 d, respectively, with and without pre-treatment with huperzine A. The inducers used here include: staurosporine, thapsigargin, hydrogen peroxide (H2O2), carbonyl cyanidem-chlorophenyl hydrazone (CCCP) and L-(-)-threo-3-hydroxyaspartic acid (THA). These agents were selected as they induce apop-tosis/necrosis via mechanisms implicated in patients with generalized motor neuron disease. Cell death was determined in NSC34 cells by metabolic activity, caspase activity/expression and by nuclear morphology and in the OTCs, using immunohistochemistry and Western blot analysis. Nuclear staining of NSC34 cells revealed cell death induced by staurosporine, thapsigargin, H2O2 and CCCP. This induction was significantly reduced with 2 h pre-treatment with 10 µM huperzine A (maximum, 35% rescue; p<0.05) following exposure to staurosporine, thapsigargin and H2O2 but not with CCCP. These data were supported by the metabolic assays and caspase activity. In addition, pretreatment with huperzine A dramatically improved motor neuron survival, based on choline acetyltransferase (ChAT) expression analysis in OTCs following exposure to THA, and compared to THA-treated control cultures. These studies are currently being extended to include other inducers and with additional compounds as potential drug therapies that could be used in combination for the treatment of patients with ALS.


Toxicology and Applied Pharmacology | 2011

Methyl Vitamin B12 but not methylfolate rescues a motor neuron-like cell line from homocysteine-mediated cell death

Richelle Hemendinger; Edward J. Armstrong; Benjamin Rix Brooks

Homocysteine is an excitatory amino acid implicated in multiple diseases including amyotrophic lateral sclerosis (ALS). Information on the toxicity of homocysteine in motor neurons is limited and few studies have examined how this toxicity can be modulated. In NSC-34D cells (a hybrid cell line derived from motor neuron-neuroblastoma), homocysteine induces apoptotic cell death in the millimolar range with a TC₅₀ (toxic concentration at which 50% of maximal cell death is achieved) of 2.2 mM, confirmed by activation of caspase 3/7. Induction of apoptosis was independent of short-term reactive oxygen species (ROS) generation. Methyl Vitamin B12 (MeCbl) and methyl tetrahydrofolate (MTHF), used clinically to treat elevated homocysteine levels, were tested for their ability to reverse homocysteine-mediated motor neuron cell death. MeCbl in the micromolar range was able to provide neuroprotection (2 h pretreatment prior to homocysteine) and neurorescue (simultaneous exposure with homocysteine) against millimolar homocysteine with an IC₅₀ (concentration at which 50% of maximal cell death is inhibited) of 0.6 μM and 0.4 μM, respectively. In contrast, MTHF (up to 10 μM) had no effect on homocysteine-mediated cell death. MeCbl inhibited caspase 3/7 activation by homocysteine in a time- and dose-dependent manner, whereas MTHF had no effect. We conclude that MeCbl is effective against homocysteine-induced cell death in motor neurons in a ROS-independent manner, via a reduction in caspase activation and apoptosis. MeCbl decreases Hcy induced motor neuron death in vitro in a hybrid cell line derived from motor neuron-neuroblastoma and may play a role in the treatment of late stage ALS where HCy levels are increased in animal models of ALS.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2011

Metabolic and functional differences between brain and spinal cord mitochondria underlie different predisposition to pathology.

Alexander Panov; Nataliya Kubalik; Natalia Zinchenko; Daisy M. Ridings; David A. Radoff; Richelle Hemendinger; Benjamin Rex Brooks; Herbert L. Bonkovsky

Mitochondrial dysfunctions contribute to neurodegeneration, the locations of which vary among neurodegenerative diseases. To begin to understand what mechanisms may underlie higher vulnerability of the spinal cord motor neurons in amyotrophic lateral sclerosis, compared with brain mitochondria, we studied three major functions of rat brain mitochondria (BM) and spinal cord mitochondria (SCM) mitochondria: oxidative phosphorylation, Ca(2+) sequestration, and production of reactive oxygen species (ROS), using a new metabolic paradigm (Panov et al., J. Biol. Chem. 284: 14448-14456, 2009). We present data that SCM share some unique metabolic properties of the BM. However, SCM also have several distinctions from the BM: 1) With the exception of succinate, SCM show significantly lower rates of respiration with all substrates studied; 2) immunoblotting analysis showed that this may be due to 30-40% lower contents of respiratory enzymes and porin; 3) compared with BM, SCM sequestered 40-50% less Ca(2+), and the total tissue calcium content was 8 times higher in the spinal cord; 4) normalization for mitochondria from 1 g of tissue showed that BM can sequester several times more Ca(2+) than was available in the brain tissue, whereas SCM had the capacity to sequester only 10-20% of the total tissue Ca(2+); and 5) with succinate and succinate-containing substrate mixtures, SCM showed significantly higher state 4 respiration than BM and generated more ROS associated with the reverse electron transport. We conclude that SCM have an intrinsically higher risk of oxidative damage and overload with calcium than BM, and thus spinal cord may be more vulnerable under some pathologic conditions. (250).


Cell Transplantation | 2004

Transgenic Sertoli cells as a vehicle for gene therapy.

Jannette M. Dufour; Paul F. Gores; Richelle Hemendinger; Dwaine F. Emerich; Craig Halberstadt

Gene therapy involves the manipulation of genetic material to replace defective or deficient proteins to restore function in disease states. These genes are introduced into cells by mechanical, chemical, and biological approaches. To date, cell-based gene therapy has been hampered by the lack of an abundant, safe, and immunologically acceptable source of tissue. As an alternative, transgenic animals designed to produce therapeutic proteins could overcome some of the issues facing gene therapy but the problem of immune rejection of the tissue remains. This article reports on recently published work indicating the potential to use transgenic Sertoli cells surviving in an allogeneic host by virtue of their ability to create a locally immunoprivileged environment, thereby providing for the continued delivery of a therapeutic protein to the systemic circulation.


Toxicology and Applied Pharmacology | 2012

Neurotoxic injury pathways in differentiated mouse motor neuron–neuroblastoma hybrid (NSC-34D) cells in vitro—Limited effect of riluzole on thapsigargin, but not staurosporine, hydrogen peroxide and homocysteine neurotoxicity

Richelle Hemendinger; Edward J. Armstrong; Nick Radio; Benjamin Rix Brooks

The neuroblastoma-spinal motor neuron fusion cell line, NSC-34, in its differentiated form, NSC-34D, permits examining the effects of riluzole, a proven treatment for amyotrophic lateral sclerosis (ALS) on cell death induction by staurosporine (STS), thapsigargin (Thaps), hydrogen peroxide (H(2)O(2)) and homocysteine (HCy). These neurotoxins, applied exogenously, have mechanisms of action related to the various proposed molecular pathogenetic pathways in ALS and are differentiated from endogenous cell death that is associated with cytoplasmic aggregate formation in motor neurons. Nuclear morphology, caspase-3/7 activation and high content imaging were used to assess toxicity of these neurotoxins with and without co-treatment with riluzole, a benzothiazole compound with multiple pharmacological actions. STS was the most potent neurotoxin at killing NSC-34D cells with a toxic concentration at which 50% of maximal cell death is achieved (TC(50)=0.01μM), followed by Thaps (TC(50)=0.9μM) and H(2)O(2) (TC(50)=15μM) with HCy requiring higher concentrations to kill at the same level (TC(50)=2200μM). Riluzole provided neurorescue with a 20% absolute reduction (47.6% relative reduction) in apoptotic cell death against Thaps-induced NSC-34D cell (p≤0.05), but had no effect on STS-, H(2)O(2)- and HCy-induced NSC-34D cell death. This effect of riluzole on Thaps induction of cell death was independent of caspase-3/7 activation. Riluzole mitigated a toxin that can cause intracellular calcium dysregulation associated with endoplasmic reticulum (ER) stress but not toxins associated with other cell death mechanisms.


American Journal of Physiology-cell Physiology | 2003

NOX5 NAD(P)H oxidase regulates growth and apoptosis in DU 145 prostate cancer cells.

Sukhdev S. Brar; Zachary Corbin; Thomas P. Kennedy; Richelle Hemendinger; Lisa R. Thornton; Bettina Bommarius; Rebecca S. Arnold; A. Richard Whorton; Anne Sturrock; Thomas P. Huecksteadt; Mark T. Quinn; Kevin Krenitsky; Kristia G. Ardie; J. David Lambeth; John R. Hoidal

Collaboration


Dive into the Richelle Hemendinger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dwaine F. Emerich

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Paul F. Gores

Carolinas Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sergey Dikalov

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Benjamin Rix Brooks

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jannette M. Dufour

Texas Tech University Health Sciences Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge