Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rick D. Stuart-Smith is active.

Publication


Featured researches published by Rick D. Stuart-Smith.


Nature | 2014

Global conservation outcomes depend on marine protected areas with five key features

Graham J. Edgar; Rick D. Stuart-Smith; Trevor J. Willis; Stuart Kininmonth; Susan C. Baker; Stuart Banks; Ns Barrett; Mikel A. Becerro; Anthony T. F. Bernard; Just Berkhout; Cd Buxton; Stuart Campbell; At Cooper; Marlene Davey; Sophie C. Edgar; Günter Försterra; David E. Galván; Alejo J. Irigoyen; David J. Kushner; Rodrigo Moura; P. Ed Parnell; German Soler; Elisabeth M. A. Strain; Russell Thomson

In line with global targets agreed under the Convention on Biological Diversity, the number of marine protected areas (MPAs) is increasing rapidly, yet socio-economic benefits generated by MPAs remain difficult to predict and under debate. MPAs often fail to reach their full potential as a consequence of factors such as illegal harvesting, regulations that legally allow detrimental harvesting, or emigration of animals outside boundaries because of continuous habitat or inadequate size of reserve. Here we show that the conservation benefits of 87 MPAs investigated worldwide increase exponentially with the accumulation of five key features: no take, well enforced, old (>10 years), large (>100 km2), and isolated by deep water or sand. Using effective MPAs with four or five key features as an unfished standard, comparisons of underwater survey data from effective MPAs with predictions based on survey data from fished coasts indicate that total fish biomass has declined about two-thirds from historical baselines as a result of fishing. Effective MPAs also had twice as many large (>250 mm total length) fish species per transect, five times more large fish biomass, and fourteen times more shark biomass than fished areas. Most (59%) of the MPAs studied had only one or two key features and were not ecologically distinguishable from fished sites. Our results show that global conservation targets based on area alone will not optimize protection of marine biodiversity. More emphasis is needed on better MPA design, durable management and compliance to ensure that MPAs achieve their desired conservation value.


PLOS Biology | 2011

Global human footprint on the linkage between biodiversity and ecosystem functioning in reef fishes.

Camilo Mora; Octavio Aburto-Oropeza; Arturo Ayala Bocos; Paula M. Ayotte; Stuart Banks; Andrew G. Bauman; Maria Beger; Sandra Bessudo; David J. Booth; Eran Brokovich; Andrew J. Brooks; Pascale Chabanet; Joshua E. Cinner; Jorge Cortés; Juan José Cruz-Motta; Amílcar Leví Cupul Magaña; Edward E. DeMartini; Graham J. Edgar; David A. Feary; Sebastian C. A. Ferse; Alan M. Friedlander; Kevin J. Gaston; Charlotte Gough; Nicholas A. J. Graham; Alison Green; Hector M. Guzman; Marah J. Hardt; Michel Kulbicki; Yves Letourneur; Andres López Pérez

A global survey of reef fishes shows that the consequences of biodiversity loss are greater than previously anticipated as ecosystem functioning remained unsaturated with the addition of new species. Additionally, reefs worldwide, particularly those most diverse, are highly vulnerable to human impacts that are widespread and likely to worsen due to ongoing coastal overpopulation.


Nature | 2013

Integrating abundance and functional traits reveals new global hotspots of fish diversity

Rick D. Stuart-Smith; Amanda E. Bates; Jonathan S. Lefcheck; J. Emmet Duffy; Susan C. Baker; Russell Thomson; Jf Stuart-Smith; Nicole A. Hill; Stuart Kininmonth; Laura Airoldi; Mikel A. Becerro; Stuart Campbell; Terrance P. Dawson; Sergio A. Navarrete; German Soler; Elisabeth M. A. Strain; Trevor J. Willis; Graham J. Edgar

Species richness has dominated our view of global biodiversity patterns for centuries. The dominance of this paradigm is reflected in the focus by ecologists and conservation managers on richness and associated occurrence-based measures for understanding drivers of broad-scale diversity patterns and as a biological basis for management. However, this is changing rapidly, as it is now recognized that not only the number of species but the species present, their phenotypes and the number of individuals of each species are critical in determining the nature and strength of the relationships between species diversity and a range of ecological functions (such as biomass production and nutrient cycling). Integrating these measures should provide a more relevant representation of global biodiversity patterns in terms of ecological functions than that provided by simple species counts. Here we provide comparisons of a traditional global biodiversity distribution measure based on richness with metrics that incorporate species abundances and functional traits. We use data from standardized quantitative surveys of 2,473 marine reef fish species at 1,844 sites, spanning 133 degrees of latitude from all ocean basins, to identify new diversity hotspots in some temperate regions and the tropical eastern Pacific Ocean. These relate to high diversity of functional traits amongst individuals in the community (calculated using Rao’s Q), and differ from previously reported patterns in functional diversity and richness for terrestrial animals, which emphasize species-rich tropical regions only. There is a global trend for greater evenness in the number of individuals of each species, across the reef fish species observed at sites (‘community evenness’), at higher latitudes. This contributes to the distribution of functional diversity hotspots and contrasts with well-known latitudinal gradients in richness. Our findings suggest that the contribution of species diversity to a range of ecosystem functions varies over large scales, and imply that in tropical regions, which have higher numbers of species, each species contributes proportionally less to community-level ecological processes on average than species in temperate regions. Metrics of ecological function usefully complement metrics of species diversity in conservation management, including when identifying planning priorities and when tracking changes to biodiversity values.


Nature | 2016

Bright spots among the world’s coral reefs

Joshua E. Cinner; Cindy Huchery; M.A. MacNeil; Nicholas A. J. Graham; Tim R. McClanahan; Joseph Maina; Eva Maire; John N. Kittinger; Christina C. Hicks; Camilo Mora; Edward H. Allison; Stéphanie D'agata; Andrew S. Hoey; David A. Feary; Larry B. Crowder; Ivor D. Williams; Michel Kulbicki; Laurent Vigliola; Laurent Wantiez; Graham J. Edgar; Rick D. Stuart-Smith; Stuart A. Sandin; Alison Green; Marah J. Hardt; Maria Beger; Alan M. Friedlander; Stuart J. Campbell; K. E. Holmes; Shaun K. Wilson; Eran Brokovich

Ongoing declines in the structure and function of the world’s coral reefs require novel approaches to sustain these ecosystems and the millions of people who depend on them. A presently unexplored approach that draws on theory and practice in human health and rural development is to systematically identify and learn from the ‘outliers’—places where ecosystems are substantially better (‘bright spots’) or worse (‘dark spots’) than expected, given the environmental conditions and socioeconomic drivers they are exposed to. Here we compile data from more than 2,500 reefs worldwide and develop a Bayesian hierarchical model to generate expectations of how standing stocks of reef fish biomass are related to 18 socioeconomic drivers and environmental conditions. We identify 15 bright spots and 35 dark spots among our global survey of coral reefs, defined as sites that have biomass levels more than two standard deviations from expectations. Importantly, bright spots are not simply comprised of remote areas with low fishing pressure; they include localities where human populations and use of ecosystem resources is high, potentially providing insights into how communities have successfully confronted strong drivers of change. Conversely, dark spots are not necessarily the sites with the lowest absolute biomass and even include some remote, uninhabited locations often considered near pristine. We surveyed local experts about social, institutional, and environmental conditions at these sites to reveal that bright spots are characterized by strong sociocultural institutions such as customary taboos and marine tenure, high levels of local engagement in management, high dependence on marine resources, and beneficial environmental conditions such as deep-water refuges. Alternatively, dark spots are characterized by intensive capture and storage technology and a recent history of environmental shocks. Our results suggest that investments in strengthening fisheries governance, particularly aspects such as participation and property rights, could facilitate innovative conservation actions that help communities defy expectations of global reef degradation.


Nature | 2015

Thermal biases and vulnerability to warming in the world’s marine fauna

Rick D. Stuart-Smith; Graham J. Edgar; Ns Barrett; Stuart Kininmonth; Amanda E. Bates

A critical assumption underlying projections of biodiversity change associated with global warming is that ecological communities comprise balanced mixes of warm-affinity and cool-affinity species which, on average, approximate local environmental temperatures. Nevertheless, here we find that most shallow water marine species occupy broad thermal distributions that are aggregated in either temperate or tropical realms. These distributional trends result in ocean-scale spatial thermal biases, where communities are dominated by species with warmer or cooler affinity than local environmental temperatures. We use community-level thermal deviations from local temperatures as a form of sensitivity to warming, and combine these with projected ocean warming data to predict warming-related loss of species from present-day communities over the next century. Large changes in local species composition appear likely, and proximity to thermal limits, as inferred from present-day species’ distributional ranges, outweighs spatial variation in warming rates in contributing to predicted rates of local species loss.


Scientific Data | 2014

Systematic global assessment of reef fish communities by the Reef Life Survey program

Graham J. Edgar; Rick D. Stuart-Smith

The assessment of patterns in macroecology, including those most relevant to global biodiversity conservation, has been hampered by a lack of quantitative data collected in a consistent manner over the global scale. Global analyses of species’ abundance data typically rely on records aggregated from multiple studies where different sampling methods and varying levels of taxonomic and spatial resolution have been applied. Here we describe the Reef Life Survey (RLS) reef fish dataset, which contains 134,759 abundance records, of 2,367 fish taxa, from 1,879 sites in coral and rocky reefs distributed worldwide. Data were systematically collected using standardized methods, offering new opportunities to assess broad-scale spatial patterns in community structure. The development of such a large dataset was made possible through contributions of investigators associated with science and conservation agencies worldwide, and the assistance of a team of over 100 recreational SCUBA divers, who undertook training in scientific techniques for underwater surveys and voluntarily contributed skills, expertise and their time to data collection.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Biodiversity enhances reef fish biomass and resistance to climate change

J. Emmett Duffy; Jonathan S. Lefcheck; Rick D. Stuart-Smith; Sergio A. Navarrete; Graham J. Edgar

Significance Marine fisheries provide a major global source of protein, feeding billions of people, but they face destabilization in many regions from overexploitation and climate change. Using the most comprehensive dataset of fish diversity and abundance, encompassing over 4,500 surveys from nearshore habitats around the world, we show that biodiversity is among the strongest predictors of reef fish community biomass, comparable in importance to global temperature gradients and human impacts. Importantly, diverse fish communities were more resistant to rising and variable temperature, suggesting that high biodiversity also buffers against changing climate. Maintaining taxonomically and functionally diverse fish communities can thus stabilize fisheries’ yields in a changing ocean. Fishes are the most diverse group of vertebrates, play key functional roles in aquatic ecosystems, and provide protein for a billion people, especially in the developing world. Those functions are compromised by mounting pressures on marine biodiversity and ecosystems. Because of its economic and food value, fish biomass production provides an unusually direct link from biodiversity to critical ecosystem services. We used the Reef Life Survey’s global database of 4,556 standardized fish surveys to test the importance of biodiversity to fish production relative to 25 environmental drivers. Temperature, biodiversity, and human influence together explained 47% of the global variation in reef fish biomass among sites. Fish species richness and functional diversity were among the strongest predictors of fish biomass, particularly for the large-bodied species and carnivores preferred by fishers, and these biodiversity effects were robust to potentially confounding influences of sample abundance, scale, and environmental correlations. Warmer temperatures increased biomass directly, presumably by raising metabolism, and indirectly by increasing diversity, whereas temperature variability reduced biomass. Importantly, diversity and climate interact, with biomass of diverse communities less affected by rising and variable temperatures than species-poor communities. Biodiversity thus buffers global fish biomass from climate change, and conservation of marine biodiversity can stabilize fish production in a changing ocean.


PLOS ONE | 2015

A Standardised Vocabulary for Identifying Benthic Biota and Substrata from Underwater Imagery: The CATAMI Classification Scheme

Franziska Althaus; Nicole A. Hill; Renata Ferrari; Luke Edwards; Rachel Przeslawski; Christine H. L. Schönberg; Rick D. Stuart-Smith; Ns Barrett; Graham J. Edgar; Jamie Colquhoun; Maggie Tran; Ar Jordan; Tony Rees; Karen Gowlett-Holmes

Imagery collected by still and video cameras is an increasingly important tool for minimal impact, repeatable observations in the marine environment. Data generated from imagery includes identification, annotation and quantification of biological subjects and environmental features within an image. To be long-lived and useful beyond their project-specific initial purpose, and to maximize their utility across studies and disciplines, marine imagery data should use a standardised vocabulary of defined terms. This would enable the compilation of regional, national and/or global data sets from multiple sources, contributing to broad-scale management studies and development of automated annotation algorithms. The classification scheme developed under the Collaborative and Automated Tools for Analysis of Marine Imagery (CATAMI) project provides such a vocabulary. The CATAMI classification scheme introduces Australian-wide acknowledged, standardised terminology for annotating benthic substrates and biota in marine imagery. It combines coarse-level taxonomy and morphology, and is a flexible, hierarchical classification that bridges the gap between habitat/biotope characterisation and taxonomy, acknowledging limitations when describing biological taxa through imagery. It is fully described, documented, and maintained through curated online databases, and can be applied across benthic image collection methods, annotation platforms and scoring methods. Following release in 2013, the CATAMI classification scheme was taken up by a wide variety of users, including government, academia and industry. This rapid acceptance highlights the scheme’s utility and the potential to facilitate broad-scale multidisciplinary studies of marine ecosystems when applied globally. Here we present the CATAMI classification scheme, describe its conception and features, and discuss its utility and the opportunities as well as challenges arising from its use.


Annual Review of Marine Science | 2016

New Approaches to Marine Conservation Through the Scaling Up of Ecological Data

Graham J. Edgar; Amanda E. Bates; Tomas J. Bird; Alun H. Jones; Stuart Kininmonth; Rick D. Stuart-Smith; Thomas J. Webb

In an era of rapid global change, conservation managers urgently need improved tools to track and counter declining ecosystem conditions. This need is particularly acute in the marine realm, where threats are out of sight, inadequately mapped, cumulative, and often poorly understood, thereby generating impacts that are inefficiently managed. Recent advances in macroecology, statistical analysis, and the compilation of global data will play a central role in improving conservation outcomes, provided that global, regional, and local data streams can be integrated to produce locally relevant and interpretable outputs. Progress will be assisted by (a) expanded rollout of systematic surveys that quantify species patterns, including some carried out with help from citizen scientists; (b) coordinated experimental research networks that utilize large-scale manipulations to identify mechanisms underlying these patterns;


PLOS ONE | 2015

Reef Fishes at All Trophic Levels Respond Positively to Effective Marine Protected Areas

German Soler; Graham J. Edgar; Russell Thomson; Stuart Kininmonth; Stuart J. Campbell; Terrance P. Dawson; Ns Barrett; Anthony T. F. Bernard; David E. Galván; Trevor J. Willis; Timothy J. Alexander; Rick D. Stuart-Smith

Marine Protected Areas (MPAs) offer a unique opportunity to test the assumption that fishing pressure affects some trophic groups more than others. Removal of larger predators through fishing is often suggested to have positive flow-on effects for some lower trophic groups, in which case protection from fishing should result in suppression of lower trophic groups as predator populations recover. We tested this by assessing differences in the trophic structure of reef fish communities associated with 79 MPAs and open-access sites worldwide, using a standardised quantitative dataset on reef fish community structure. The biomass of all major trophic groups (higher carnivores, benthic carnivores, planktivores and herbivores) was significantly greater (by 40% - 200%) in effective no-take MPAs relative to fished open-access areas. This effect was most pronounced for individuals in large size classes, but with no size class of any trophic group showing signs of depressed biomass in MPAs, as predicted from higher predator abundance. Thus, greater biomass in effective MPAs implies that exploitation on shallow rocky and coral reefs negatively affects biomass of all fish trophic groups and size classes. These direct effects of fishing on trophic structure appear stronger than any top down effects on lower trophic levels that would be imposed by intact predator populations. We propose that exploitation affects fish assemblages at all trophic levels, and that local ecosystem function is generally modified by fishing.

Collaboration


Dive into the Rick D. Stuart-Smith's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ns Barrett

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

At Cooper

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar

Sd Frusher

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gt Pecl

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge