Rico Otto
University of California, San Diego
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rico Otto.
Science | 2008
J. Mikosch; S. Trippel; C. Eichhorn; Rico Otto; Upakarasamy Lourderaj; Jiaxu Zhang; William L. Hase; M. Weidemüller
Anion-molecule nucleophilic substitution (SN2) reactions are known for their rich reaction dynamics, caused by a complex potential energy surface with a submerged barrier and by weak coupling of the relevant rotational-vibrational quantum states. The dynamics of the SN2 reaction of Cl– + CH3I were uncovered in detail by using crossed molecular beam imaging. As a function of the collision energy, the transition from a complex-mediated reaction mechanism to direct backward scattering of the I– product was observed experimentally. Chemical dynamics calculations were performed that explain the observed energy transfer and reveal an indirect roundabout reaction mechanism involving CH3 rotation.
Nature Chemistry | 2012
Rico Otto; J. Brox; Sebastian Trippel; Martin Stei; T. Best
Solvents have a profound influence on chemical reactions in solution and have long been used to control their outcome. Such effects are generally considered to be governed by thermodynamics; however, little is known about the steric effects of solvent molecules. Here, we probe the influence of individual solvent molecules on reaction dynamics and present results on the atomistic dynamics of a microsolvated chemical reaction--the fundamentally important nucleophilic substitution reaction. We study the reaction of OH(-) with CH(3)I using a technique that combines crossed-beam imaging with a cold source of microsolvated reactants. Our results reveal several distinct reaction mechanisms for different degrees of solvation; surprisingly, the classical co-linear substitution mechanism only dominates the dynamics for mono-solvated reactants. We analyse the relative importance of the different mechanisms using ab initio calculations and show that the steric characteristics are at least as relevant as the energetics in understanding the influence of solvent molecules in such microsolvated reactions.
Accounts of Chemical Research | 2014
Jing Xie; Rico Otto; Jochen Mikosch; Jiaxu Zhang; William L. Hase
For the traditional model of gas-phase X(-) + CH3Y SN2 reactions, C3v ion-dipole pre- and postreaction complexes X(-)---CH3Y and XCH3---Y(-), separated by a central barrier, are formed. Statistical intramolecular dynamics are assumed for these complexes, so that their unimolecular rate constants are given by RRKM theory. Both previous simulations and experiments have shown that the dynamics of these complexes are not statistical and of interest is how these nonstatistical dynamics affect the SN2 rate constant. This work also found there was a transition from an indirect, nonstatistical, complex forming mechanism, to a direct mechanism, as either the vibrational and/or relative translational energy of the reactants was increased. The current Account reviews recent collaborative studies involving molecular beam ion-imaging experiments and direct (on-the-fly) dynamics simulations of the SN2 reactions for which Cl(-), F(-), and OH(-) react with CH3I. Also considered are reactions of the microsolvated anions OH(-)(H2O) and OH(-)(H2O)2 with CH3I. These studies have provided a detailed understanding of the atomistic mechanisms for these SN2 reactions. Overall, the atomistic dynamics for the Cl(-) + CH3I SN2 reaction follows those found in previous studies. The reaction is indirect, complex forming at low reactant collision energies, and then there is a transition to direct reaction between 0.2 and 0.4 eV. The direct reaction may occur by rebound mechanism, in which the ClCH3 product rebounds backward from the I(-) product or a stripping mechanism in which Cl(-) strips CH3 from the I atom and scatters in the forward direction. A similar indirect to direct mechanistic transition was observed in previous work for the Cl(-) + CH3Cl and Cl(-) + CH3Br SN2 reactions. At the high collision energy of 1.9 eV, a new indirect mechanism, called the roundabout, was discovered. For the F(-) + CH3I reaction, there is not a transition from indirect to direct reaction as Erel is increased. The indirect mechanism, with prereaction complex formation, is important at all the Erel investigated, contributing up ∼60% of the reaction. The remaining direct reaction occurs by the rebound and stripping mechanisms. Though the potential energy curve for the OH(-) + CH3I reaction is similar to that for F(-) + CH3I, the two reactions have different dynamics. They are akin, in that for both there is not a transition from an indirect to direct reaction. However, for F(-) + CH3I indirect reaction dominates at all Erel, but it is less important for OH(-) + CH3I and becomes negligible as Erel is increased. Stripping is a minor channel for F(-) + CH3I, but accounts for more than 60% of the OH(-) + CH3I reaction at high Erel. Adding one or two H2O molecules to OH(-) alters the reaction dynamics from that for unsolvated OH(-). Adding one H2O molecule enhances indirect reaction at low Erel, and changes the reaction mechanism from primarily stripping to rebound at high Erel. With two H2O molecules the dynamics is indirect and isotropic at all collision energies.
Science | 2014
Rico Otto; Jianyi Ma; Amelia W. Ray; Jennifer S Daluz; Jun Li; Hua Guo; Robert E. Continetti
The study of gas-phase reaction dynamics has advanced to a point where four-atom reactions are the proving ground for detailed comparisons between experiment and theory. Here, a combined experimental and theoretical study of the dissociation dynamics of the tetra-atomic FH2O system is presented, providing snapshots of the F + H2O → HF + OH reaction. Photoelectron-photofragment coincidence measurements of the dissociative photodetachment (DPD) of the F¯(H2O) anion revealed various dissociation pathways along different electronic states. A distinct photoelectron spectrum of stable FH–OH complexes was also measured and attributed to long-lived Feshbach resonances. Comparison to full-dimensional quantum calculations confirms the sensitivity of the DPD measurements to the subtle dynamics on the low-lying FH2O potential energy surfaces over a wide range of nuclear configurations and energies. A reaction is studied in fine detail by electron removal from a charged precursor to unveil and track a neutral intermediate. A View from the Middle The intuitive way to study a bimolecular reaction is to induce a collision between separate reagents and then track the ensuing events. Crossed molecular beam studies have revealed the quantum mechanical details of numerous systems in this fashion. Otto et al. (p. 396, published online 9 January) applied a more recent approach of starting in the middle of the F + H2O → HF + OH reaction trajectory, postcollision, by photodetaching an electron from a stabilized complex of water and a fluoride ion, and then tracking the fate of the neutral fragments.
Journal of the American Chemical Society | 2013
Jochen Mikosch; Jiaxu Zhang; Sebastian Trippel; Christoph Eichhorn; Rico Otto; Rui Sun; Wibe A. de Jong; M. Weidemüller; William L. Hase
The highly exoergic nucleophilic substitution reaction F(-) + CH3I shows reaction dynamics strikingly different from that of substitution reactions of larger halogen anions. Over a wide range of collision energies, a large fraction of indirect scattering via a long-lived hydrogen-bonded complex is found both in crossed-beam imaging experiments and in direct chemical dynamics simulations. Our measured differential scattering cross sections show large-angle scattering and low product velocities for all collision energies, resulting from efficient transfer of the collision energy to internal energy of the CH3F reaction product. Both findings are in strong contrast to the previously studied substitution reaction of Cl(-) + CH3I [Science 2008, 319, 183-186] at all but the lowest collision energies, a discrepancy that was not captured in a subsequent study at only a low collision energy [J. Phys. Chem. Lett. 2010, 1, 2747-2752]. Our direct chemical dynamics simulations at the DFT/B97-1 level of theory show that the reaction is dominated by three atomic-level mechanisms, an indirect reaction proceeding via an F(-)-HCH2I hydrogen-bonded complex, a direct rebound, and a direct stripping reaction. The indirect mechanism is found to contribute about one-half of the overall substitution reaction rate at both low and high collision energies. This large fraction of indirect scattering at high collision energy is particularly surprising, because the barrier for the F(-)-HCH2I complex to form products is only 0.10 eV. Overall, experiment and simulation agree very favorably in both the scattering angle and the product internal energy distributions.
Journal of Physical Chemistry A | 2013
Jing Xie; Rui Sun; Matthew R. Siebert; Rico Otto; William L. Hase
Electronic structure and direct dynamics calculations were used to study the potential energy surface and atomic-level dynamics for the OH(-) + CH3I reactions. The results are compared with crossed molecular beam, ion imaging experiments. The DFT/B97-1/ECP/d level of theory gives reaction energetics in good agreement with experiment and higher level calculations, and it was used for the direct dynamics simulations that were performed for reactant collision energies of 2.0, 1.0, 0.5, and 0.05 eV. Five different pathways are observed in the simulations, forming CH3OH + I(-), CH2I(-) + H2O, CH2 + I(-) + H2O, IOH(-) + CH3, and [CH3--I--OH](-). The SN2 first pathway and the proton-transfer second pathway dominate the reaction dynamics. Though the reaction energetics favor the SN2 pathway, the proton-transfer pathway is more important except for the lowest collision energy. The relative ion yield determined from the simulations is in overall good agreement with experiment. Both the SN2 and proton-transfer pathways occur via direct rebound, direct stripping, and indirect mechanisms. Except for the highest collision energy, 70-90% of the indirect reaction for the SN2 pathway occurs via formation of the hydrogen-bonded OH(-)---HCH2I prereaction complex. For the proton-transfer pathway the indirect reaction is more complex with the roundabout mechanism and formation of the OH(-)---HCH2I and CH2I(-)---HOH complexes contributing to the reaction. The majority of the SN2 reaction is direct at 2.0, 1.0, and 0.5 eV, dominated by stripping. At 0.05 eV the two direct mechanisms and the indirect mechanisms have nearly equal contributions. The majority of the proton-transfer pathway is direct stripping at 2.0, 1.0, and 0.5 eV, but the majority of the reaction is indirect at 0.05 eV. The product relative translational energy distributions are in good agreement with experiment for both the SN2 and proton-transfer pathways. For both, direct reaction preferentially transfers the product energy to relative translation, whereas transfer to product vibration is more important for the indirect reactions. For the proton-transfer reactions the velocity scattering angle distribution is peaked in the forward direction and in quite good agreement with experiment. However, for the SN2 reaction, the experimental scattering is isotropic in nature whereas forward scattering dominates the simulation distributions. The implication is that the simulations give too much stripping, which leads to forward scattering. The dynamics for the OH(-) + CH3I SN2 pathway are similar to those found previously for the F(-) + CH3I SN2 reaction.
Physical Review Letters | 2006
S. Trippel; J. Mikosch; R. Berhane; Rico Otto; M. Weidemüller
The absolute photodetachment cross section of OH- anions at a rotational and translational temperature of 170 K is determined by measuring the detachment-induced decay rate of the anions in a multipole radio-frequency ion trap. In comparison with previous results, the obtained cross section shows the importance of the initial rotational-state distribution. Using a tomography scan of the photodetachment laser through the trapped ion cloud, the derived cross section is model-independent and thus features a small systematic uncertainty. The tomography also yields the column density of the OH- anions in the 22-pole ion trap in good agreement with the expected trapping potential of a large field free region bound by steep potential walls.
Journal of Physical Chemistry A | 2008
Jochen Mikosch; Rico Otto; Sebastian Trippel; C. Eichhorn; M. Weidemüller
The association and collisional stabilization of the S(N)2 entrance channel complex [Cl(-)...CH3Cl]* is studied in a low-temperature radiofrequency ion trap. The temperature dependence of the ternary rate coefficient is measured and a much stronger inverse temperature dependence than expected from a simple statistical calculation is found. From these data the lifetime of the transient S(N)2 complex has been derived as a function of temperature. It is suggested that the inverse temperature dependent rates of nonsymmetric S(N)2 reactions are related to the observed inverse temperature dependence of the transient ion-dipole complexes.
Journal of Chemical Physics | 2015
Jing Xie; Rico Otto; William L. Hase
Direct dynamics simulations, with B97-1/ECP/d theory, were performed to study the role of microsolvation for the OH(-)(H2O) + CH3I reaction. The SN2 reaction dominates at all reactant collision energies, but at higher collision energies proton transfer to form CH2I(-), and to a lesser extent CH2I(-) (H2O), becomes important. The SN2 reaction occurs by direct rebound and stripping mechanisms, and 28 different indirect atomistic mechanisms, with the latter dominating. Important components of the indirect mechanisms are the roundabout and formation of SN2 and proton transfer pre-reaction complexes and intermediates, including [CH3--I--OH](-). In contrast, for the unsolvated OH(-) + CH3I SN2 reaction, there are only seven indirect atomistic mechanisms and the direct mechanisms dominate. Overall, the simulation results for the OH(-)(H2O) + CH3I SN2 reaction are in good agreement with experiment with respect to reaction rate constant, product branching ratio, etc. Differences between simulation and experiment are present for the SN2 velocity scattering angle at high collision energies and the proton transfer probability at low collision energies. Equilibrium solvation by the H2O molecule is unimportant. The SN2 reaction is dominated by events in which H2O leaves the reactive system as CH3OH is formed or before CH3OH formation. Formation of solvated products is unimportant and participation of the (H2O)CH3OH---I(-) post-reaction complex for the SN2 reaction is negligible.
The Astrophysical Journal | 2011
T. Best; Rico Otto; Sebastian Trippel; P. Hlavenka; A.D. von Zastrow; S. Eisenbach; S. Jezouin; Erik Vigren; M. Hamberg; Wolf D. Geppert
Absolute photodetachment cross sections have been measured for the hydrocarbon chain anions C(n)H(-), n = 2, 4, and 6, which are relevant for an understanding of molecular clouds in the interstella ...