Ridhi Tariyal
Broad Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ridhi Tariyal.
PLOS Neglected Tropical Diseases | 2014
Jeffrey G. Shaffer; Donald S. Grant; John S. Schieffelin; Matt L. Boisen; Augustine Goba; Jessica N. Hartnett; Danielle Levy; Rachael E. Yenni; Lina M. Moses; Mohammed Fullah; Mambo Momoh; Mbalu Fonnie; Richard Fonnie; Lansana Kanneh; Veronica J. Koroma; Kandeh Kargbo; Darin Ottomassathien; Ivana J Muncy; Abigail B. Jones; Megan M. Illick; Peter C. Kulakosky; Allyson M. Haislip; Christopher M. Bishop; Deborah H. Elliot; Bethany L. Brown; Hu Zhu; Kathryn M. Hastie; Kristian G. Andersen; Stephen K. Gire; Shervin Tabrizi
Background Lassa fever (LF), an often-fatal hemorrhagic disease caused by Lassa virus (LASV), is a major public health threat in West Africa. When the violent civil conflict in Sierra Leone (1991 to 2002) ended, an international consortium assisted in restoration of the LF program at Kenema Government Hospital (KGH) in an area with the worlds highest incidence of the disease. Methodology/Principal Findings Clinical and laboratory records of patients presenting to the KGH Lassa Ward in the post-conflict period were organized electronically. Recombinant antigen-based LF immunoassays were used to assess LASV antigenemia and LASV-specific antibodies in patients who met criteria for suspected LF. KGH has been reestablished as a center for LF treatment and research, with over 500 suspected cases now presenting yearly. Higher case fatality rates (CFRs) in LF patients were observed compared to studies conducted prior to the civil conflict. Different criteria for defining LF stages and differences in sensitivity of assays likely account for these differences. The highest incidence of LF in Sierra Leone was observed during the dry season. LF cases were observed in ten of Sierra Leones thirteen districts, with numerous cases from outside the traditional endemic zone. Deaths in patients presenting with LASV antigenemia were skewed towards individuals less than 29 years of age. Women self-reporting as pregnant were significantly overrepresented among LASV antigenemic patients. The CFR of ribavirin-treated patients presenting early in acute infection was lower than in untreated subjects. Conclusions/Significance Lassa fever remains a major public health threat in Sierra Leone. Outreach activities should expand because LF may be more widespread in Sierra Leone than previously recognized. Enhanced case finding to ensure rapid diagnosis and treatment is imperative to reduce mortality. Even with ribavirin treatment, there was a high rate of fatalities underscoring the need to develop more effective and/or supplemental treatments for LF.
Cell | 2015
Kristian G. Andersen; B. Jesse Shapiro; Christian B. Matranga; Rachel Sealfon; Aaron E. Lin; Lina M. Moses; Onikepe A. Folarin; Augustine Goba; Ikponmwonsa Odia; Philomena E. Ehiane; Mambu Momoh; Eleina M. England; Sarah M. Winnicki; Luis M. Branco; Stephen K. Gire; Eric Phelan; Ridhi Tariyal; Ryan Tewhey; Omowunmi Omoniwa; Mohammed Fullah; Richard Fonnie; Mbalu Fonnie; Lansana Kanneh; Simbirie Jalloh; Michael Gbakie; Sidiki Saffa; Kandeh Karbo; Adrianne D. Gladden; James Qu; Matthew Stremlau
The 2013-2015 West African epidemic of Ebola virus disease (EVD) reminds us of how little is known about biosafety level 4 viruses. Like Ebola virus, Lassa virus (LASV) can cause hemorrhagic fever with high case fatality rates. We generated a genomic catalog of almost 200 LASV sequences from clinical and rodent reservoir samples. We show that whereas the 2013-2015 EVD epidemic is fueled by human-to-human transmissions, LASV infections mainly result from reservoir-to-human infections. We elucidated the spread of LASV across West Africa and show that this migration was accompanied by changes in LASV genome abundance, fatality rates, codon adaptation, and translational efficiency. By investigating intrahost evolution, we found that mutations accumulate in epitopes of viral surface proteins, suggesting selection for immune escape. This catalog will serve as a foundation for the development of vaccines and diagnostics. VIDEO ABSTRACT.
Viral Immunology | 2015
Matthew L. Boisen; John S. Schieffelin; Augustine Goba; Darin Oottamasathien; Abigail B. Jones; Jeffrey G. Shaffer; Kathryn M. Hastie; Jessica N. Hartnett; Mambu Momoh; Mohammed Fullah; Michael Gabiki; Sidiki Safa; Michelle Zandonatti; Marnie L. Fusco; Zach Bornholdt; Dafna M. Abelson; Stephen K. Gire; Kristian G. Andersen; Ridhi Tariyal; Mathew Stremlau; Robert W. Cross; Joan B. Geisbert; Kelly R. Pitts; Thomas W. Geisbert; Peter Kulakoski; Russell B. Wilson; Lee A. Henderson; Pardis C. Sabeti; Donald S. Grant; Robert F. Garry
Lassa fever (LF) is a severe viral hemorrhagic fever caused by Lassa virus (LASV). The LF program at the Kenema Government Hospital (KGH) in Eastern Sierra Leone currently provides diagnostic services and clinical care for more than 500 suspected LF cases per year. Nearly two-thirds of suspected LF patients presenting to the LF Ward test negative for either LASV antigen or anti-LASV immunoglobulin M (IgM), and therefore are considered to have a non-Lassa febrile illness (NLFI). The NLFI patients in this study were generally severely ill, which accounts for their high case fatality rate of 36%. The current studies were aimed at determining possible causes of severe febrile illnesses in non-LF cases presenting to the KGH, including possible involvement of filoviruses. A seroprevalence survey employing commercial enzyme-linked immunosorbent assay tests revealed significant IgM and IgG reactivity against dengue virus, chikungunya virus, West Nile virus (WNV), Leptospira, and typhus. A polymerase chain reaction-based survey using sera from subjects with acute LF, evidence of prior LASV exposure, or NLFI revealed widespread infection with Plasmodium falciparum malaria in febrile patients. WNV RNA was detected in a subset of patients, and a 419 nt amplicon specific to filoviral L segment RNA was detected at low levels in a single patient. However, 22% of the patients presenting at the KGH between 2011 and 2014 who were included in this survey registered anti-Ebola virus (EBOV) IgG or IgM, suggesting prior exposure to this agent. The 2014 Ebola virus disease (EVD) outbreak is already the deadliest and most widely dispersed outbreak of its kind on record. Serological evidence reported here for possible human exposure to filoviruses in Sierra Leone prior to the current EVD outbreak supports genetic analysis that EBOV may have been present in West Africa for some time prior to the 2014 outbreak.
PLOS Neglected Tropical Diseases | 2015
Matthew Stremlau; Kristian G. Andersen; Onikepe A. Folarin; Jessica N Grove; Ikponmwonsa Odia; Philomena E. Ehiane; Omowunmi Omoniwa; Omigie Omoregie; Pan Pan Jiang; Nathan L. Yozwiak; Christian B. Matranga; Xiao Yang; Stephen K. Gire; Sarah M. Winnicki; Ridhi Tariyal; Stephen F. Schaffner; Peter O. Okokhere; Sylvanus Okogbenin; George O. Akpede; Danny A. Asogun; Dennis E. Agbonlahor; Peter J. Walker; Robert B. Tesh; Joshua Z. Levin; Robert F. Garry; Pardis C. Sabeti; Christian T. Happi
Next-generation sequencing (NGS) has the potential to transform the discovery of viruses causing unexplained acute febrile illness (UAFI) because it does not depend on culturing the pathogen or a priori knowledge of the pathogen’s nucleic acid sequence. More generally, it has the potential to elucidate the complete human virome, including viruses that cause no overt symptoms of disease, but may have unrecognized immunological or developmental consequences. We have used NGS to identify RNA viruses in the blood of 195 patients with UAFI and compared them with those found in 328 apparently healthy (i.e., no overt signs of illness) control individuals, all from communities in southeastern Nigeria. Among UAFI patients, we identified the presence of nucleic acids from several well-characterized pathogenic viruses, such as HIV-1, hepatitis, and Lassa virus. In our cohort of healthy individuals, however, we detected the nucleic acids of two novel rhabdoviruses. These viruses, which we call Ekpoma virus-1 (EKV-1) and Ekpoma virus-2 (EKV-2), are highly divergent, with little identity to each other or other known viruses. The most closely related rhabdoviruses are members of the genus Tibrovirus and Bas-Congo virus (BASV), which was recently identified in an individual with symptoms resembling hemorrhagic fever. Furthermore, by conducting a serosurvey of our study cohort, we find evidence for remarkably high exposure rates to the identified rhabdoviruses. The recent discoveries of novel rhabdoviruses by multiple research groups suggest that human infection with rhabdoviruses might be common. While the prevalence and clinical significance of these viruses are currently unknown, these viruses could have previously unrecognized impacts on human health; further research to understand the immunological and developmental impact of these viruses should be explored. More generally, the identification of similar novel viruses in individuals with and without overt symptoms of disease highlights the need for a broader understanding of the human virome as efforts for viral detection and discovery advance.
The Journal of Infectious Diseases | 2016
Augustine Goba; S. Humarr Khan; Mbalu Fonnie; Mohamed Fullah; Alex Moigboi; Alice Kovoma; Vandi Sinnah; Nancy Yoko; Hawa Rogers; Siddiki Safai; Mambu Momoh; Veronica J. Koroma; Fatima K. Kamara; Edwin Konowu; Mohamed Yillah; Issa French; Ibraham Mustapha; Franklyn Kanneh; Momoh Foday; Helena McCarthy; Tiangay Kallon; Mustupha Kallon; Jenneh Naiebu; Josephine Sellu; Abdul A. Jalloh; Michael Gbakie; Lansana Kanneh; James L. B. Massaly; David Kargbo; Brima Kargbo
Archive | 2016
Ridhi Tariyal; Stephen K. Gire
Archive | 2017
Ridhi Tariyal; Stephen K. Gire