Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristian G. Andersen is active.

Publication


Featured researches published by Kristian G. Andersen.


Science | 2014

Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak

Stephen K. Gire; Augustine Goba; Kristian G. Andersen; Rachel Sealfon; Daniel J. Park; Lansana Kanneh; Simbirie Jalloh; Mambu Momoh; Mohamed Fullah; Gytis Dudas; Shirlee Wohl; Lina M. Moses; Nathan L. Yozwiak; Sarah M. Winnicki; Christian B. Matranga; Christine M. Malboeuf; James Qu; Adrianne D. Gladden; Stephen F. Schaffner; Xiao Yang; Pan Pan Jiang; Mahan Nekoui; Andres Colubri; Moinya Ruth Coomber; Mbalu Fonnie; Alex Moigboi; Michael Gbakie; Fatima K. Kamara; Veronica Tucker; Edwin Konuwa

In its largest outbreak, Ebola virus disease is spreading through Guinea, Liberia, Sierra Leone, and Nigeria. We sequenced 99 Ebola virus genomes from 78 patients in Sierra Leone to ~2000× coverage. We observed a rapid accumulation of interhost and intrahost genetic variation, allowing us to characterize patterns of viral transmission over the initial weeks of the epidemic. This West African variant likely diverged from central African lineages around 2004, crossed from Guinea to Sierra Leone in May 2014, and has exhibited sustained human-to-human transmission subsequently, with no evidence of additional zoonotic sources. Because many of the mutations alter protein sequences and other biologically meaningful targets, they should be monitored for impact on diagnostics, vaccines, and therapies critical to outbreak response.


Immunity | 2008

Neuropilin-1 Expression on Regulatory T Cells Enhances Their Interactions with Dendritic Cells during Antigen Recognition

Milka Sarris; Kristian G. Andersen; Felix Randow; Luzia Mayr; Alexander G. Betz

Summary The interaction of T cells with dendritic cells (DCs) determines whether an immune response is launched or not. Recognition of antigen leads to formation of immunological synapses at the interface between the cells. The length of interaction is likely to determine the functional outcome, because it limits the number of MHC class II-peptide complexes that can be recruited into the synapse. Here, we show that regulatory T (Treg) cells and naive helper T (Th) cells interact differently with DCs in the absence of proinflammatory stimuli. Although differences in T cell receptor repertoire might contribute, Foxp3-induced phenotypic differences play a major role. We found that Neuropilin-1 (Nrp-1), which is expressed by most Treg cells but not naive Th cells, promoted prolonged interactions with immature DCs (iDCs), resulting in higher sensitivity to limiting amounts of antigen. This is likely to give Treg cells an advantage over naive Th cells, with the same specificity leading to a “default” suppression of immune responses in the absence of “danger signals.”


Cell | 2013

Identifying Recent Adaptations in Large-Scale Genomic Data

Shamai Aaron Grossman; Kristian G. Andersen; Ilya Shlyakhter; Shervin Tabrizi; Sarah M. Winnicki; Angela Yen; Daniel J. Park; Dustin Shahab Griesemer; Elinor K. Karlsson; Moran N. Cabili; Richard A. Adegbola; Rameshwar N. K. Bamezai; Adrian V. S. Hill; Fredrik O. Vannberg; John L. Rinn; Eric S. Lander; Stephen F. Schaffner; Pardis C. Sabeti

Although several hundred regions of the human genome harbor signals of positive natural selection, few of the relevant adaptive traits and variants have been elucidated. Using full-genome sequence variation from the 1000 Genomes (1000G) Project and the composite of multiple signals (CMS) test, we investigated 412 candidate signals and leveraged functional annotation, protein structure modeling, epigenetics, and association studies to identify and extensively annotate candidate causal variants. The resulting catalog provides a tractable list for experimental follow-up; it includes 35 high-scoring nonsynonymous variants, 59 variants associated with expression levels of a nearby coding gene or lincRNA, and numerous variants associated with susceptibility to infectious disease and other phenotypes. We experimentally characterized one candidate nonsynonymous variant in Toll-like receptor 5 (TLR5) and show that it leads to altered NF-κB signaling in response to bacterial flagellin. PAPERFLICK:


Cell | 2015

Ebola Virus Epidemiology, Transmission, and Evolution during Seven Months in Sierra Leone

Daniel J. Park; Gytis Dudas; Shirlee Wohl; Augustine Goba; Shannon Whitmer; Kristian G. Andersen; Rachel Sealfon; Jason T. Ladner; Jeffrey R. Kugelman; Christian B. Matranga; Sarah M. Winnicki; James Qu; Stephen K. Gire; Adrianne Gladden-Young; Simbirie Jalloh; Dolo Nosamiefan; Nathan L. Yozwiak; Lina M. Moses; Pan-Pan Jiang; Aaron E. Lin; Stephen F. Schaffner; Brian Bird; Jonathan S. Towner; Mambu Mamoh; Michael Gbakie; Lansana Kanneh; David Kargbo; James L.B. Massally; Fatima K. Kamara; Edwin Konuwa

Summary The 2013–2015 Ebola virus disease (EVD) epidemic is caused by the Makona variant of Ebola virus (EBOV). Early in the epidemic, genome sequencing provided insights into virus evolution and transmission and offered important information for outbreak response. Here, we analyze sequences from 232 patients sampled over 7 months in Sierra Leone, along with 86 previously released genomes from earlier in the epidemic. We confirm sustained human-to-human transmission within Sierra Leone and find no evidence for import or export of EBOV across national borders after its initial introduction. Using high-depth replicate sequencing, we observe both host-to-host transmission and recurrent emergence of intrahost genetic variants. We trace the increasing impact of purifying selection in suppressing the accumulation of nonsynonymous mutations over time. Finally, we note changes in the mucin-like domain of EBOV glycoprotein that merit further investigation. These findings clarify the movement of EBOV within the region and describe viral evolution during prolonged human-to-human transmission.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Alloantigen-enhanced accumulation of CCR5+ ‘effector’ regulatory T cells in the gravid uterus

Marinos Kallikourdis; Kristian G. Andersen; Katie Welch; Alexander G. Betz

Regulatory T cells play an essential role in preventing fetal rejection by the maternal immune system. Here we show that, based on the expression of CCR5, regulatory T cells can be divided into a highly suppressive CCR5+ and a far less suppressive CCR5− subpopulation, suggesting that the former represent the effector arm of regulatory T cells. Although regulatory T cells from CCR5−/− gene deletion mutants still suppress, they are less effective mediators of maternal–fetal tolerance. The accumulation of CCR5+ regulatory T cells at this site appears to be enhanced by alloantigen. This finding is in stark contrast to the systemic expansion of regulatory T cells during pregnancy, which appears to be alloantigen-independent. The fact that CCR5+ regulatory T cells preferentially accumulate in the gravid uterus and that expression of CCR5 on regulatory T cells can be induced by activation lead us to propose that CCR5 is responsible for the accumulation of those regulatory T cells that have been activated by paternal antigens.


Nature | 2017

Establishment and cryptic transmission of Zika virus in Brazil and the Americas

Nuno Rodrigues Faria; Josh Quick; Julien Thézé; J. G. de Jesus; Marta Giovanetti; Moritz U. G. Kraemer; Sarah C. Hill; Allison Black; A. C. da Costa; Luciano Franco; Sandro Patroca da Silva; Chieh-Hsi Wu; Jayna Raghwani; Simon Cauchemez; L. du Plessis; M. P. Verotti; W. K. de Oliveira; E. H. Carmo; Giovanini Evelim Coelho; A. C. F. S. Santelli; L. C. Vinhal; C. M. Henriques; Jared T. Simpson; Matthew Loose; Kristian G. Andersen; Nathan D. Grubaugh; Sneha Somasekar; Charles Y. Chiu; José Esteban Muñoz-Medina; César González-Bonilla

Transmission of Zika virus (ZIKV) in the Americas was first confirmed in May 2015 in northeast Brazil. Brazil has had the highest number of reported ZIKV cases worldwide (more than 200,000 by 24 December 2016) and the most cases associated with microcephaly and other birth defects (2,366 confirmed by 31 December 2016). Since the initial detection of ZIKV in Brazil, more than 45 countries in the Americas have reported local ZIKV transmission, with 24 of these reporting severe ZIKV-associated disease. However, the origin and epidemic history of ZIKV in Brazil and the Americas remain poorly understood, despite the value of this information for interpreting observed trends in reported microcephaly. Here we address this issue by generating 54 complete or partial ZIKV genomes, mostly from Brazil, and reporting data generated by a mobile genomics laboratory that travelled across northeast Brazil in 2016. One sequence represents the earliest confirmed ZIKV infection in Brazil. Analyses of viral genomes with ecological and epidemiological data yield an estimate that ZIKV was present in northeast Brazil by February 2014 and is likely to have disseminated from there, nationally and internationally, before the first detection of ZIKV in the Americas. Estimated dates for the international spread of ZIKV from Brazil indicate the duration of pre-detection cryptic transmission in recipient regions. The role of northeast Brazil in the establishment of ZIKV in the Americas is further supported by geographic analysis of ZIKV transmission potential and by estimates of the basic reproduction number of the virus.


Viruses | 2014

Nomenclature- and database-compatible names for the two Ebola virus variants that emerged in Guinea and the Democratic Republic of the Congo in 2014.

Jens H. Kuhn; Kristian G. Andersen; Sylvain Baize; Yīmíng Bào; Sina Bavari; Nicolas Berthet; Olga Blinkova; J. Rodney Brister; Anna N. Clawson; Joseph N. Fair; Martin Gabriel; Robert F. Garry; Stephen K. Gire; Augustine Goba; Jean-Paul Gonzalez; Stephan Günther; Christian T. Happi; Peter B. Jahrling; Jimmy Kapetshi; Gary P. Kobinger; Jeffrey R. Kugelman; Eric Leroy; Gaël D. Maganga; Placide Mbala; Lina M. Moses; Jean-Jacques Muyembe-Tamfum; Magassouba N’Faly; Stuart T. Nichol; Sunday A. Omilabu; Gustavo Palacios

In 2014, Ebola virus (EBOV) was identified as the etiological agent of a large and still expanding outbreak of Ebola virus disease (EVD) in West Africa and a much more confined EVD outbreak in Middle Africa. Epidemiological and evolutionary analyses confirmed that all cases of both outbreaks are connected to a single introduction each of EBOV into human populations and that both outbreaks are not directly connected. Coding-complete genomic sequence analyses of isolates revealed that the two outbreaks were caused by two novel EBOV variants, and initial clinical observations suggest that neither of them should be considered strains. Here we present consensus decisions on naming for both variants (West Africa: “Makona”, Middle Africa: “Lomela”) and provide database-compatible full, shortened, and abbreviated names that are in line with recently established filovirus sub-species nomenclatures.


Philosophical Transactions of the Royal Society B | 2012

Genome-wide scans provide evidence for positive selection of genes implicated in Lassa fever

Kristian G. Andersen; Ilya Shylakhter; Shervin Tabrizi; Sharon R. Grossman; Christian T. Happi; Pardis C. Sabeti

Rapidly evolving viruses and other pathogens can have an immense impact on human evolution as natural selection acts to increase the prevalence of genetic variants providing resistance to disease. With the emergence of large datasets of human genetic variation, we can search for signatures of natural selection in the human genome driven by such disease-causing microorganisms. Based on this approach, we have previously hypothesized that Lassa virus (LASV) may have been a driver of natural selection in West African populations where Lassa haemorrhagic fever is endemic. In this study, we provide further evidence for this notion. By applying tests for selection to genome-wide data from the International Haplotype Map Consortium and the 1000 Genomes Consortium, we demonstrate evidence for positive selection in LARGE and interleukin 21 (IL21), two genes implicated in LASV infectivity and immunity. We further localized the signals of selection, using the recently developed composite of multiple signals method, to introns and putative regulatory regions of those genes. Our results suggest that natural selection may have targeted variants giving rise to alternative splicing or differential gene expression of LARGE and IL21. Overall, our study supports the hypothesis that selective pressures imposed by LASV may have led to the emergence of particular alleles conferring resistance to Lassa fever, and opens up new avenues of research pursuit.


Nature | 2017

Zika virus evolution and spread in the Americas

Hayden C. Metsky; Christian B. Matranga; Shirlee Wohl; Stephen F. Schaffner; Catherine A. Freije; Sarah M. Winnicki; Kendra West; James Qu; Mary Lynn Baniecki; Adrianne Gladden-Young; Aaron E. Lin; Christopher Tomkins-Tinch; Simon H. Ye; Daniel J. Park; Cynthia Y. Luo; Kayla G. Barnes; Rickey R. Shah; Bridget Chak; Giselle Barbosa-Lima; Edson Delatorre; Yasmine Rangel Vieira; Lauren M. Paul; Amanda L. Tan; Carolyn M. Barcellona; Mario C. Porcelli; Chalmers Vasquez; Andrew Cannons; Marshall R. Cone; Kelly N. Hogan; Edgar W. Kopp

Although the recent Zika virus (ZIKV) epidemic in the Americas and its link to birth defects have attracted a great deal of attention, much remains unknown about ZIKV disease epidemiology and ZIKV evolution, in part owing to a lack of genomic data. Here we address this gap in knowledge by using multiple sequencing approaches to generate 110 ZIKV genomes from clinical and mosquito samples from 10 countries and territories, greatly expanding the observed viral genetic diversity from this outbreak. We analysed the timing and patterns of introductions into distinct geographic regions; our phylogenetic evidence suggests rapid expansion of the outbreak in Brazil and multiple introductions of outbreak strains into Puerto Rico, Honduras, Colombia, other Caribbean islands, and the continental United States. We find that ZIKV circulated undetected in multiple regions for many months before the first locally transmitted cases were confirmed, highlighting the importance of surveillance of viral infections. We identify mutations with possible functional implications for ZIKV biology and pathogenesis, as well as those that might be relevant to the effectiveness of diagnostic tests.


PLOS Neglected Tropical Diseases | 2014

Lassa Fever in Post-Conflict Sierra Leone

Jeffrey G. Shaffer; Donald S. Grant; John S. Schieffelin; Matt L. Boisen; Augustine Goba; Jessica N. Hartnett; Danielle Levy; Rachael E. Yenni; Lina M. Moses; Mohammed Fullah; Mambo Momoh; Mbalu Fonnie; Richard Fonnie; Lansana Kanneh; Veronica J. Koroma; Kandeh Kargbo; Darin Ottomassathien; Ivana J Muncy; Abigail B. Jones; Megan M. Illick; Peter C. Kulakosky; Allyson M. Haislip; Christopher M. Bishop; Deborah H. Elliot; Bethany L. Brown; Hu Zhu; Kathryn M. Hastie; Kristian G. Andersen; Stephen K. Gire; Shervin Tabrizi

Background Lassa fever (LF), an often-fatal hemorrhagic disease caused by Lassa virus (LASV), is a major public health threat in West Africa. When the violent civil conflict in Sierra Leone (1991 to 2002) ended, an international consortium assisted in restoration of the LF program at Kenema Government Hospital (KGH) in an area with the worlds highest incidence of the disease. Methodology/Principal Findings Clinical and laboratory records of patients presenting to the KGH Lassa Ward in the post-conflict period were organized electronically. Recombinant antigen-based LF immunoassays were used to assess LASV antigenemia and LASV-specific antibodies in patients who met criteria for suspected LF. KGH has been reestablished as a center for LF treatment and research, with over 500 suspected cases now presenting yearly. Higher case fatality rates (CFRs) in LF patients were observed compared to studies conducted prior to the civil conflict. Different criteria for defining LF stages and differences in sensitivity of assays likely account for these differences. The highest incidence of LF in Sierra Leone was observed during the dry season. LF cases were observed in ten of Sierra Leones thirteen districts, with numerous cases from outside the traditional endemic zone. Deaths in patients presenting with LASV antigenemia were skewed towards individuals less than 29 years of age. Women self-reporting as pregnant were significantly overrepresented among LASV antigenemic patients. The CFR of ribavirin-treated patients presenting early in acute infection was lower than in untreated subjects. Conclusions/Significance Lassa fever remains a major public health threat in Sierra Leone. Outreach activities should expand because LF may be more widespread in Sierra Leone than previously recognized. Enhanced case finding to ensure rapid diagnosis and treatment is imperative to reduce mortality. Even with ribavirin treatment, there was a high rate of fatalities underscoring the need to develop more effective and/or supplemental treatments for LF.

Collaboration


Dive into the Kristian G. Andersen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander G. Betz

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge