Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Riikka H. Hämäläinen is active.

Publication


Featured researches published by Riikka H. Hämäläinen.


Nature | 2009

piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells

Knut Woltjen; Iacovos P. Michael; Paria Mohseni; Ridham Desai; Maria Mileikovsky; Riikka H. Hämäläinen; Rebecca Cowling; Wei Wang; Pentao Liu; Marina Gertsenstein; Keisuke Kaji; Hoon-Ki Sung; Andras Nagy

Transgenic expression of just four defined transcription factors (c-Myc, Klf4, Oct4 and Sox2) is sufficient to reprogram somatic cells to a pluripotent state. The resulting induced pluripotent stem (iPS) cells resemble embryonic stem cells in their properties and potential to differentiate into a spectrum of adult cell types. Current reprogramming strategies involve retroviral, lentiviral, adenoviral and plasmid transfection to deliver reprogramming factor transgenes. Although the latter two methods are transient and minimize the potential for insertion mutagenesis, they are currently limited by diminished reprogramming efficiencies. piggyBac (PB) transposition is host-factor independent, and has recently been demonstrated to be functional in various human and mouse cell lines. The PB transposon/transposase system requires only the inverted terminal repeats flanking a transgene and transient expression of the transposase enzyme to catalyse insertion or excision events. Here we demonstrate successful and efficient reprogramming of murine and human embryonic fibroblasts using doxycycline-inducible transcription factors delivered by PB transposition. Stable iPS cells thus generated express characteristic pluripotency markers and succeed in a series of rigorous differentiation assays. By taking advantage of the natural propensity of the PB system for seamless excision, we show that the individual PB insertions can be removed from established iPS cell lines, providing an invaluable tool for discovery. In addition, we have demonstrated the traceless removal of reprogramming factors joined with viral 2A sequences delivered by a single transposon from murine iPS lines. We anticipate that the unique properties of this virus-independent simplification of iPS cell production will accelerate this field further towards full exploration of the reprogramming process and future cell-based therapies.


Nature | 2011

Copy number variation and selection during reprogramming to pluripotency

Samer M.I. Hussein; Nizar N. Batada; Sanna Vuoristo; Reagan W. Ching; Reija Autio; Elisa Närvä; Siemon Ng; Michel Sourour; Riikka H. Hämäläinen; Cia Olsson; Karolina Lundin; Milla Mikkola; Ras Trokovic; Michael Peitz; Oliver Brüstle; David P. Bazett-Jones; Kari Alitalo; Riitta Lahesmaa; Andras Nagy; Timo Otonkoski

The mechanisms underlying the low efficiency of reprogramming somatic cells into induced pluripotent stem (iPS) cells are poorly understood. There is a clear need to study whether the reprogramming process itself compromises genomic integrity and, through this, the efficiency of iPS cell establishment. Using a high-resolution single nucleotide polymorphism array, we compared copy number variations (CNVs) of different passages of human iPS cells with their fibroblast cell origins and with human embryonic stem (ES) cells. Here we show that significantly more CNVs are present in early-passage human iPS cells than intermediate passage human iPS cells, fibroblasts or human ES cells. Most CNVs are formed de novo and generate genetic mosaicism in early-passage human iPS cells. Most of these novel CNVs rendered the affected cells at a selective disadvantage. Remarkably, expansion of human iPS cells in culture selects rapidly against mutated cells, driving the lines towards a genetic state resembling human ES cells.


Nature Genetics | 2005

The gene disrupted in Marinesco-Sjögren syndrome encodes SIL1, an HSPA5 cochaperone.

Anna-Kaisa Anttonen; Ibrahim Mahjneh; Riikka H. Hämäläinen; Clotilde Lagier-Tourenne; Outi Kopra; Laura Waris; Mikko Anttonen; Tarja Joensuu; Hannu Kalimo; Anders Paetau; Lisbeth Tranebjærg; Denys Chaigne; Michel Koenig; Orvar Eeg-Olofsson; Bjarne Udd; Mirja Somer; Hannu Somer; Anna-Elina Lehesjoki

We identified the gene underlying Marinesco-Sjögren syndrome, which is characterized by cerebellar ataxia, progressive myopathy and cataracts. We identified four disease-associated, predicted loss-of-function mutations in SIL1, which encodes a nucleotide exchange factor for the heat-shock protein 70 (HSP70) chaperone HSPA5. These data, together with the similar spatial and temporal patterns of tissue expression of Sil1 and Hspa5, suggest that disturbed SIL1-HSPA5 interaction and protein folding is the primary pathology in Marinesco-Sjögren syndrome.


American Journal of Human Genetics | 2001

Mutations in a Novel Gene with Transmembrane Domains Underlie Usher Syndrome Type 3

Tarja Joensuu; Riikka H. Hämäläinen; Bo Yuan; Cheryl K. Johnson; Saara Tegelberg; Paolo Gasparini; Leopoldo Zelante; Ulla Pirvola; Leenamaija Pakarinen; Anna-Elina Lehesjoki; Albert de la Chapelle; Eeva-Marja Sankila

Usher syndrome type 3 (USH3) is an autosomal recessive disorder characterized by progressive hearing loss, severe retinal degeneration, and variably present vestibular dysfunction, assigned to 3q21-q25. Here, we report on the positional cloning of the USH3 gene. By haplotype and linkage-disequilibrium analyses in Finnish carriers of a putative founder mutation, the critical region was narrowed to 250 kb, of which we sequenced, assembled, and annotated 207 kb. Two novel genes-NOPAR and UCRP-and one previously identified gene-H963-were excluded as USH3, on the basis of mutational analysis. USH3, the candidate gene that we identified, encodes a 120-amino-acid protein. Fifty-two Finnish patients were homozygous for a termination mutation, Y100X; patients in two Finnish families were compound heterozygous for Y100X and for a missense mutation, M44K, whereas patients in an Italian family were homozygous for a 3-bp deletion leading to an amino acid deletion and substitution. USH3 has two predicted transmembrane domains, and it shows no homology to known genes. As revealed by northern blotting and reverse-transcriptase PCR, it is expressed in many tissues, including the retina.


Cell Metabolism | 2012

Somatic Progenitor Cell Vulnerability to Mitochondrial DNA Mutagenesis Underlies Progeroid Phenotypes in Polg Mutator Mice

Kati Ahlqvist; Riikka H. Hämäläinen; Shuichi Yatsuga; Marko Uutela; Mügen Terzioglu; Alexandra Götz; Saara Forsström; Petri Salven; Alexandre Angers-Loustau; Outi Kopra; Henna Tyynismaa; Nils-Göran Larsson; Kirmo Wartiovaara; Tomas A. Prolla; Aleksandra Trifunovic; Anu Suomalainen

Somatic stem cell (SSC) dysfunction is typical for different progeroid phenotypes in mice with genomic DNA repair defects. MtDNA mutagenesis in mice with defective Polg exonuclease activity also leads to progeroid symptoms, by an unknown mechanism. We found that Polg-Mutator mice had neural (NSC) and hematopoietic progenitor (HPC) dysfunction already from embryogenesis. NSC self-renewal was decreased in vitro, and quiescent NSC amounts were reduced in vivo. HPCs showed abnormal lineage differentiation leading to anemia and lymphopenia. N-acetyl-L-cysteine treatment rescued both NSC and HPC abnormalities, suggesting that subtle ROS/redox changes, induced by mtDNA mutagenesis, modulate SSC function. Our results show that mtDNA mutagenesis affected SSC function early but manifested as respiratory chain deficiency in nondividing tissues in old age. Deletor mice, having mtDNA deletions in postmitotic cells and no progeria, had normal SSCs. We propose that SSC compartment is sensitive to mtDNA mutagenesis, and that mitochondrial dysfunction in SSCs can underlie progeroid manifestations.


European Journal of Human Genetics | 2002

USH3A transcripts encode clarin-1, a four-transmembrane-domain protein with a possible role in sensory synapses

Avital Adato; Sarah Vreugde; Tarja Joensuu; Nili Avidan; Riikka H. Hämäläinen; Olga Belenkiy; Tsviya Olender; Batsheva Bonne-Tamir; Edna Ben-Asher; Carmen Espinós; José M. Millán; Anna-Elina Lehesjoki; John G. Flannery; Karen B. Avraham; Shmuel Pietrokovski; Eeva-Marja Sankila; Jacques S. Beckmann; Doron Lancet

Usher syndrome type 3 (USH3) is an autosomal recessive disorder characterised by the association of post-lingual progressive hearing loss, progressive visual loss due to retinitis pigmentosa and variable presence of vestibular dysfunction. Because the previously defined transcripts do not account for all USH3 cases, we performed further analysis and revealed the presence of additional exons embedded in longer human and mouse USH3A transcripts and three novel USH3A mutations. Expression of Ush3a transcripts was localised by whole mount in situ hybridisation to cochlear hair cells and spiral ganglion cells. The full length USH3A transcript encodes clarin-1, a four-transmembrane-domain protein, which defines a novel vertebrate-specific family of three paralogues. Limited sequence homology to stargazin, a cerebellar synapse four-transmembrane-domain protein, suggests a role for clarin-1 in hair cell and photoreceptor cell synapses, as well as a common pathophysiological pathway for different Usher syndromes.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Tissue- and cell-type–specific manifestations of heteroplasmic mtDNA 3243A>G mutation in human induced pluripotent stem cell-derived disease model

Riikka H. Hämäläinen; Tuula Manninen; Hanna Koivumäki; Mikhail Kislin; Timo Otonkoski; Anu Suomalainen

Significance Mitochondrial DNA (mtDNA) mutations are a common cause of human inherited diseases and manifest with exceptional clinical heterogeneity and tissue specificity, the molecular basis of which are largely unknown. We produced induced pluripotent stem cells (iPSCs) from patients carrying the most common mtDNA mutation, m.3243A>G. During reprogramming, the cells underwent an mtDNA bottleneck, mimicking that in epiblast specification. We differentiated iPSCs to heteroplasmic human cells and tissues with isogenic nuclear background and show that the disease manifestation depends on cellular context. We show that upon neuronal differentiation, complex I is actively degraded by an autophagy-mediated mechanism. Our data indicate that cellular context actively modifies mtDNA segregation and manifestations, and that complex I is actively down-regulated in neurons with m.3243A>G mutation. Mitochondrial DNA (mtDNA) mutations manifest with vast clinical heterogeneity. The molecular basis of this variability is mostly unknown because the lack of model systems has hampered mechanistic studies. We generated induced pluripotent stem cells from patients carrying the most common human disease mutation in mtDNA, m.3243A>G, underlying mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome. During reprogramming, heteroplasmic mtDNA showed bimodal segregation toward homoplasmy, with concomitant changes in mtDNA organization, mimicking mtDNA bottleneck during epiblast specification. Induced pluripotent stem cell–derived neurons and various tissues derived from teratomas manifested cell-type specific respiratory chain (RC) deficiency patterns. Similar to MELAS patient tissues, complex I defect predominated. Upon neuronal differentiation, complex I specifically was sequestered in perinuclear PTEN-induced putative kinase 1 (PINK1) and Parkin-positive autophagosomes, suggesting active degradation through mitophagy. Other RC enzymes showed normal mitochondrial network distribution. Our data show that cellular context actively modifies RC deficiency manifestation in MELAS and that autophagy is a significant component of neuronal MELAS pathogenesis.


Methods of Molecular Biology | 2011

Transgene-free production of pluripotent stem cells using piggyBac transposons.

Knut Woltjen; Riikka H. Hämäläinen; Mark Kibschull; Maria Mileikovsky; Andras Nagy

Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) allows the derivation of -personalized stem cells. Transposon transgenesis is a novel and viable alternative to viral transduction methods for the delivery of reprogramming factors (Oct4, Sox2, Klf4, c-Myc) to somatic cells. Since transposons can be introduced as naked DNA using common plasmid transfection protocols, they provide a safer alternative to viral methods. piggyBac transposons are host-factor independent and integrate stably into the target genome, yet benefit from the unique characteristic of seamless removal mediated by transient expression of piggyBac transposase. Thus, piggyBac transposition provides an effective means to generate human, transgene-free iPSCs. The protocol describes the production of iPSCs from human embryonic fibroblasts, delivering reprogramming factors via plasmid transfection and piggyBac transposition.


Cell Reports | 2015

mtDNA Mutagenesis Disrupts Pluripotent Stem Cell Function by Altering Redox Signaling.

Riikka H. Hämäläinen; Kati Ahlqvist; Pekka Ellonen; Maija Lepistö; Angela Logan; Timo Otonkoski; Michael P. Murphy; Anu Suomalainen

Summary mtDNA mutagenesis in somatic stem cells leads to their dysfunction and to progeria in mouse. The mechanism was proposed to involve modification of reactive oxygen species (ROS)/redox signaling. We studied the effect of mtDNA mutagenesis on reprogramming and stemness of pluripotent stem cells (PSCs) and show that PSCs select against specific mtDNA mutations, mimicking germline and promoting mtDNA integrity despite their glycolytic metabolism. Furthermore, mtDNA mutagenesis is associated with an increase in mitochondrial H2O2, reduced PSC reprogramming efficiency, and self-renewal. Mitochondria-targeted ubiquinone, MitoQ, and N-acetyl-L-cysteine efficiently rescued these defects, indicating that both reprogramming efficiency and stemness are modified by mitochondrial ROS. The redox sensitivity, however, rendered PSCs and especially neural stem cells sensitive to MitoQ toxicity. Our results imply that stem cell compartment warrants special attention when the safety of new antioxidants is assessed and point to an essential role for mitochondrial redox signaling in maintaining normal stem cell function.


Stem Cells and Development | 2013

Small Molecule Inhibitors Promote Efficient Generation of Induced Pluripotent Stem Cells From Human Skeletal Myoblasts

Ras Trokovic; Jere Weltner; Tuula Manninen; Milla Mikkola; Karolina Lundin; Riikka H. Hämäläinen; Anu Suomalainen; Timo Otonkoski

Human somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by ectopic expression of key transcription factors. iPSCs have been generated from a variety of cell types. However, iPSC induction from human myoblasts has not yet been reported. Human primary skeletal myoblasts can be cultured from diagnostic muscle biopsy specimens, and thousands of lines are frozen and stored in biobanks, and are a valuable source for iPSC-based etiological and pathogenic studies. Our aim was to generate iPSCs from human skeletal myoblasts enriched from muscle biopsy samples. We used retro- or Sendai virus vector-mediated reprogramming of enriched human myoblasts from 7 donors. We show that stable iPSC lines can be generated from human myoblasts at efficiency similar to that of fibroblasts when appropriate media is used, and the efficiency of the feeder-free iPSC generation can be significantly improved by inhibitors of histone deacetylase (sodium butyrate) and TGF-β signaling (SB431542).

Collaboration


Dive into the Riikka H. Hämäläinen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge