Rika Draenert
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rika Draenert.
Nature Medicine | 2004
Alasdair Leslie; K. Pfafferott; P Chetty; Rika Draenert; M. M. Addo; Margaret E. Feeney; Yanhua Tang; Edward C. Holmes; Todd M. Allen; J G Prado; Marcus Altfeld; Christian Brander; C Dixon; D Ramduth; P Jeena; S A Thomas; A St John; Timothy Roach; B Kupfer; Graz Luzzi; Anne Edwards; G Taylor; H Lyall; Gareth Tudor-Williams; Vas Novelli; J Martinez-Picado; Photini Kiepiela; Bruce D. Walker; Philip J. R. Goulder
Within-patient HIV evolution reflects the strong selection pressure driving viral escape from cytotoxic T-lymphocyte (CTL) recognition. Whether this intrapatient accumulation of escape mutations translates into HIV evolution at the population level has not been evaluated. We studied over 300 patients drawn from the B- and C-clade epidemics, focusing on human leukocyte antigen (HLA) alleles HLA-B57 and HLA-B5801, which are associated with long-term HIV control and are therefore likely to exert strong selection pressure on the virus. The CTL response dominating acute infection in HLA-B57/5801-positive subjects drove positive selection of an escape mutation that reverted to wild-type after transmission to HLA-B57/5801-negative individuals. A second escape mutation within the epitope, by contrast, was maintained after transmission. These data show that the process of accumulation of escape mutations within HIV is not inevitable. Complex epitope- and residue-specific selection forces, including CTL-mediated positive selection pressure and virus-mediated purifying selection, operate in tandem to shape HIV evolution at the population level.
Journal of Virology | 2003
M. M. Addo; Xu G. Yu; Almas Rathod; Daniel E. Cohen; Robert L. Eldridge; Daryld Strick; Mary N. Johnston; Colleen Corcoran; Alysse Wurcel; Cecily A. Fitzpatrick; Margaret E. Feeney; William Rodriguez; Nesli Basgoz; Rika Draenert; David Stone; Christian Brander; Philip J. R. Goulder; Eric S. Rosenberg; Marcus Altfeld; Bruce D. Walker
ABSTRACT Cellular immune responses play a critical role in the control of human immunodeficiency virus type 1 (HIV-1); however, the breadth of these responses at the single-epitope level has not been comprehensively assessed. We therefore screened peripheral blood mononuclear cells (PBMC) from 57 individuals at different stages of HIV-1 infection for virus-specific T-cell responses using a matrix of 504 overlapping peptides spanning all expressed HIV-1 proteins in a gamma interferon-enzyme-linked immunospot (Elispot) assay. HIV-1-specific T-cell responses were detectable in all study subjects, with a median of 14 individual epitopic regions targeted per person (range, 2 to 42), and all 14 HIV-1 protein subunits were recognized. HIV-1 p24-Gag and Nef contained the highest epitope density and were also the most frequently recognized HIV-1 proteins. The total magnitude of the HIV-1-specific response ranged from 280 to 25,860 spot-forming cells (SFC)/106 PBMC (median, 4,245) among all study participants. However, the number of epitopic regions targeted, the protein subunits recognized, and the total magnitude of HIV-1-specific responses varied significantly among the tested individuals, with the strongest and broadest responses detectable in individuals with untreated chronic HIV-1 infection. Neither the breadth nor the magnitude of the total HIV-1-specific CD8+-T-cell responses correlated with plasma viral load. We conclude that a peptide matrix-based Elispot assay allows for rapid, sensitive, specific, and efficient assessment of cellular immune responses directed against the entire expressed HIV-1 genome. These data also suggest that the impact of T-cell responses on control of viral replication cannot be explained by the mere quantification of the magnitude and breadth of the CD8+-T-cell response, even if a comprehensive pan-genome screening approach is applied.
Journal of Virology | 2005
Todd M. Allen; Marcus Altfeld; Shaun C. Geer; Elizabeth T. Kalife; C. Moore; Kristin M. O'Sullivan; Ivna DeSouza; Margaret E. Feeney; Robert L. Eldridge; Erica L. Maier; Daniel E. Kaufmann; Matthew P. Lahaie; Laura L. Reyor; Giancarlo Tanzi; Mary N. Johnston; Christian Brander; Rika Draenert; Jürgen K. Rockstroh; Heiko Jessen; Eric S. Rosenberg; S. Mallal; Bruce D. Walker
ABSTRACT The sequence diversity of human immunodeficiency virus type 1 (HIV-1) represents a major obstacle to the development of an effective vaccine, yet the forces impacting the evolution of this pathogen remain unclear. To address this issue we assessed the relationship between genome-wide viral evolution and adaptive CD8+ T-cell responses in four clade B virus-infected patients studied longitudinally for as long as 5 years after acute infection. Of the 98 amino acid mutations identified in nonenvelope antigens, 53% were associated with detectable CD8+ T-cell responses, indicative of positive selective immune pressures. An additional 18% of amino acid mutations represented substitutions toward common clade B consensus sequence residues, nine of which were strongly associated with HLA class I alleles not expressed by the subjects and thus indicative of reversions of transmitted CD8 escape mutations. Thus, nearly two-thirds of all mutations were attributable to CD8+ T-cell selective pressures. A closer examination of CD8 escape mutations in additional persons with chronic disease indicated that not only did immune pressures frequently result in selection of identical amino acid substitutions in mutating epitopes, but mutating residues also correlated with highly polymorphic sites in both clade B and C viruses. These data indicate a dominant role for cellular immune selective pressures in driving both individual and global HIV-1 evolution. The stereotypic nature of acquired mutations provides support for biochemical constraints limiting HIV-1 evolution and for the impact of CD8 escape mutations on viral fitness.
Journal of Experimental Medicine | 2004
Rika Draenert; Sylvie Le Gall; K. Pfafferott; Alasdair Leslie; Polan Chetty; Christian Brander; Edward C. Holmes; Shih-Chung Chang; Margaret E. Feeney; Marylyn M. Addo; Lidia Ruiz; Danni Ramduth; Prakash Jeena; Marcus Altfeld; Stephanie R. Thomas; Yanhua Tang; Cori L. Verrill; Catherine Dixon; Julia G. Prado; Photini Kiepiela; Javier Martinez-Picado; Bruce D. Walker; Philip J. R. Goulder
Mutations within cytotoxic T lymphocyte (CTL) epitopes impair T cell recognition, but escape mutations arising in flanking regions that alter antigen processing have not been defined in natural human infections. In human histocompatibility leukocyte antigen (HLA)-B57+ HIV-infected persons, immune selection pressure leads to a mutation from alanine to proline at Gag residue 146 immediately preceding the NH2 terminus of a dominant HLA-B57–restricted epitope, ISPRTLNAW. Although N-extended wild-type or mutant peptides remained well-recognized, mutant virus–infected CD4 T cells failed to be recognized by the same CTL clones. The A146P mutation prevented NH2-terminal trimming of the optimal epitope by the endoplasmic reticulum aminopeptidase I. These results demonstrate that allele-associated sequence variation within the flanking region of CTL epitopes can alter antigen processing. Identifying such mutations is of major relevance in the construction of vaccine sequences.
Journal of Experimental Medicine | 2005
Alasdair Leslie; Daniel G. Kavanagh; Isobella Honeyborne; K. Pfafferott; Charles Edwards; Tilly Pillay; Louise Hilton; Christina Thobakgale; Danni Ramduth; Rika Draenert; Sylvie Le Gall; Graz Luzzi; Anne Edwards; Christian Brander; Andrew K. Sewell; Sarah Moore; James I. Mullins; C. Moore; S. Mallal; Nina Bhardwaj; Karina Yusim; Rodney E. Phillips; Paul Klenerman; Bette T. Korber; Photini Kiepiela; Bruce D. Walker; Philip J. R. Goulder
Human immunodeficiency virus (HIV)-1 amino acid sequence polymorphisms associated with expression of specific human histocompatibility leukocyte antigen (HLA) class I alleles suggest sites of cytotoxic T lymphocyte (CTL)-mediated selection pressure and immune escape. The associations most frequently observed are between expression of an HLA class I molecule and variation from the consensus sequence. However, a substantial number of sites have been identified in which particular HLA class I allele expression is associated with preservation of the consensus sequence. The mechanism behind this is so far unexplained. The current studies, focusing on two examples of “negatively associated” or apparently preserved epitopes, suggest an explanation for this phenomenon: negative associations can arise as a result of positive selection of an escape mutation, which is stable on transmission and therefore accumulates in the population to the point at which it defines the consensus sequence. Such negative associations may only be in evidence transiently, because the statistical power to detect them diminishes as the mutations accumulate. If an escape variant reaches fixation in the population, the epitope will be lost as a potential target to the immune system. These data help to explain how HIV is evolving at a population level. Understanding the direction of HIV evolution has important implications for vaccine development.
Journal of Virology | 2004
Rika Draenert; Cori L. Verrill; Yanhua Tang; Todd M. Allen; Alysse Wurcel; Melinda Boczanowski; A. Lechner; Arthur Y. Kim; Todd J. Suscovich; Nancy V. Brown; M. M. Addo; Bruce D. Walker
ABSTRACT CD8 T-cell responses are thought to be crucial for control of viremia in human immunodeficiency virus (HIV) infection but ultimately fail to control viremia in most infected persons. Studies in acute infection have demonstrated strong CD8-mediated selection pressure and evolution of mutations conferring escape from recognition, but the ability of CD8 T-cell responses that persist in late-stage infection to recognize viruses present in vivo has not been determined. Therefore, we studied 24 subjects with advanced HIV disease (median viral load = 142,000 copies/ml; median CD4 count = 71/μl) and determined HIV-1-specific CD8 T-cell responses to all expressed viral proteins using overlapping peptides by gamma interferon Elispot assay. Chronic-stage virus was sequenced to evaluate autologous sequences within Gag epitopes, and functional avidity of detected responses was determined. In these subjects, the median number of epitopic regions targeted was 13 (range, 2 to 39) and the median cumulative magnitude of CD8 T-cell responses was 5,760 spot-forming cells/106 peripheral blood mononuclear cells (range, 185 to 24,700). On average six (range, one to 8) proteins were targeted. For 89% of evaluated CD8 T-cell responses, the autologous viral sequence was predicted to be well recognized by these responses and the majority of analyzed optimal epitopes were recognized with medium to high functional avidity by the contemporary CD8 T cells. Withdrawal of antigen by highly active antiretroviral therapy led to a significant decline both in breadth (P = 0.032) and magnitude (P = 0.0098) of these CD8 T-cell responses, providing further evidence that these responses had been driven by recognition of autologous virus. These results indicate that strong, broadly directed, and high-avidity gamma-interferon-positive CD8 T-cells directed at autologous virus persist in late disease stages, and the absence of mutations within viral epitopes indicates a lack of strong selection pressure mediated by these responses. These data imply functional impairment of CD8 T-cell responses in late-stage infection that may not be reflected by gamma interferon-based screening techniques.
Journal of Immunological Methods | 2003
Rika Draenert; Marcus Altfeld; Christian Brander; Nesli Basgoz; Colleen Corcoran; Alysse Wurcel; David Stone; Spyros A. Kalams; Alicja Trocha; Marylyn M. Addo; Philip J. R. Goulder; Bruce D. Walker
Increasing efforts are directed towards the development of effective vaccines through induction of virus-specific T cell responses. Although emerging data indicate a significant role of these cells in determining viral set point in infections such as HIV, there is as yet no consensus as to the best methods for assaying the breadth of these responses. In this study, we used sensitive interferon gamma-based intracellular cytokine staining (ICS) and Elispot assays to determine the optimal overlapping peptide set to screen for these responses. Twenty persons with established HIV infection were studied, focusing on responses to the highly immunogenic Nef protein. Six different HIV-1 Nef peptide sets were used, ranging in length from 15 to 20 amino acids (aa), in overlap from 10 to 11 amino acids, and derived from two different B clade sequences. A total of 54 CD8 T cell responses to Nef peptides were found in this cohort, of which only 12 were detected using previously defined Nef optimal epitopes. No single peptide set detected all responses. Though there was a trend of the shorter peptides detecting more CD8 T cell responses than the 20 amino acid long peptides and longer peptides detecting more CD4 T cell responses, neither was statistically significant. There was no difference between an overlap of 10 or 11 amino acids. All responses detected with the six different sets of overlapping peptides were towards the more highly conserved regions of Nef. We conclude that peptides ranging from 15 to 20 amino acids yield similar results in IFN-gamma-based Elispot and ICS assays, and that all are likely to underestimate the true breadth of responses to a given reference strain of virus.
The Lancet | 2004
Christoph Hess; Marcus Altfeld; Seddon Y. Thomas; Marylyn M. Addo; Eric S. Rosenberg; Todd M. Allen; Rika Draenert; Robert L Eldrige; Jan van Lunzen; Hans-J Stellbrink; Bruce D. Walker; Andrew D. Luster
Most people infected with HIV-1 cannot control viral replication despite the presence of virus-specific CD8+ T cells. It has been postulated that this inability is related to the failure of these cells to mature into fully differentiated effector cells. We tested this hypothesis by comparing the maturation phenotype of virus-specific CD8+ T cells in people who could control viral replication off anti-retroviral therapy with those who could not. In five patients with treated acute HIV-1-infection, structured treatment interruption (STI) induced control of viral replication was associated with expansion of virus-specific CD8+ T cells with a fully differentiated effector phenotype. These effector cells were also expanded in treatment-naive chronically infected individuals who spontaneously controlled viral replication, and augmented expression of perforin was noted in both settings. Our data show that full maturation of virus-specific CD8+ T cells is possible in the context of HIV-1-infection, and suggest that such maturation might be important in viral control.
Journal of Immunology | 2005
Margaret E. Feeney; Yanhua Tang; K. Pfafferott; K. A. Roosevelt; Rika Draenert; Alicja Trocha; Xu G. Yu; Cori L. Verrill; Todd M. Allen; C. Moore; S. Mallal; Sandra K. Burchett; Kenneth McIntosh; Stephen Pelton; M A St John; Rohan Hazra; Paul Klenerman; Marcus Altfeld; Bruce D. Walker; Philip J. R. Goulder
Mutational escape from the CTL response represents a major driving force for viral diversification in HIV-1-infected adults, but escape during infancy has not been described previously. We studied the immune response of perinatally infected children to an epitope (B57-TW10) that is targeted early during acute HIV-1 infection in adults expressing HLA-B57 and rapidly mutates under this selection pressure. Viral sequencing revealed the universal presence of escape mutations within TW10 among B57- and B5801-positive children. Mutations in TW10 and other B57-restricted epitopes arose early following perinatal infection of B57-positive children born to B57-negative mothers. Surprisingly, the majority of B57/5801-positive children exhibited a robust response to the TW10 escape variant while recognizing the wild-type epitope weakly or not at all. These data demonstrate that children, even during the first years of life, are able to mount functional immune responses of sufficient potency to drive immune escape. Moreover, our data suggest that the consequences of immune escape may differ during infancy because most children mount a strong variant-specific immune response following escape, which is rarely seen in adults. Taken together, these findings indicate that the developing immune system of children may exhibit greater plasticity in responding to a continually evolving chronic viral infection.
PLOS ONE | 2007
Marylyn M. Addo; Rika Draenert; Almas Rathod; Cori L. Verrill; Benjamin T. Davis; Rajesh T. Gandhi; Gregory K. Robbins; Nesli Basgoz; David Stone; Daniel E. Cohen; Mary N. Johnston; Theresa Flynn; Alysse Wurcel; Eric S. Rosenberg; Marcus Altfeld; Bruce D. Walker
Background CD8+ T cells impact control of viral infections by direct elimination of infected cells and secretion of a number of soluble factors. In HIV-1 infection, persistent HIV-1 specific IFN-γ+ CD8+ T cell responses are detected in the setting of disease progression, consistent with functional impairment in vivo. Recent data suggest that impaired maturation, as defined by the lineage markers CD45RA and CCR7, may contribute to a lack of immune control by these responses. Methodology/Principal Findings We investigated the maturation phenotype of epitope-specific CD8+ T cell responses directed against HIV-1 in 42 chronically infected, untreated individuals, 22 of whom were “Controllers” (median 1140 RNA copies/ml plasma, range<50 to 2520), and 20 “progressors” of whom had advanced disease and high viral loads (median 135,500 RNA copies/ml plasma, range 12100 to >750000). Evaluation of a mean of 5 epitopes per person revealed that terminally differentiated CD8+ T cells directed against HIV-1 are more often seen in HIV-1 Controllers (16/22; 73%) compared to HIV-1 progressors (7/20; 35%)(p = 0.015), but the maturation state of epitope-specific responses within a given individual was quite variable. Maturation phenotype was independent of the HLA restriction or the specificity of a given CD8+ T cell response and individual epitopes associated with slow disease progression were not more likely to be terminally differentiated. Conclusions/Significance These data indicate that although full maturation of epitope-specific CD8+ T cell responses is associated with viral control, the maturation status of HIV-1 specific CD8+ T cell responses within a given individual are quite heterogeneous, suggesting epitope-specific influences on CD8+ T cell function.