Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rimpei Morita is active.

Publication


Featured researches published by Rimpei Morita.


Immunity | 2011

Human Blood CXCR5+CD4+ T Cells Are Counterparts of T Follicular Cells and Contain Specific Subsets that Differentially Support Antibody Secretion

Rimpei Morita; Nathalie Schmitt; Salah Eddine Bentebibel; Rajaram Ranganathan; Laure Bourdery; Gerard Zurawski; Emile Foucat; Melissa Dullaers; SangKon Oh; Natalie Sabzghabaei; Elizabeth M. Lavecchio; Marilynn Punaro; Virginia Pascual; Jacques Banchereau; Hideki Ueno

Although a fraction of human blood memory CD4(+) T cells expresses chemokine (C-X-C motif) receptor 5 (CXCR5), their relationship to T follicular helper (Tfh) cells is not well established. Here we show that human blood CXCR5(+)CD4(+) T cells share functional properties with Tfh cells and appear to represent their circulating memory compartment. Blood CXCR5(+)CD4(+) T cells comprised three subsets: T helper 1 (Th1), Th2, and Th17 cells. Th2 and Th17 cells within CXCR5(+), but not within CXCR5(-), compartment efficiently induced naive B cells to produce immunoglobulins via interleukin-21 (IL-21). In contrast, Th1 cells from both CXCR5(+) and CXCR5(-) compartments lacked the capacity to help B cells. Patients with juvenile dermatomyositis, a systemic autoimmune disease, displayed a profound skewing of blood CXCR5(+) Th cell subsets toward Th2 and Th17 cells. Importantly, the skewing of subsets correlated with disease activity and frequency of blood plasmablasts. Collectively, our study suggests that an altered balance of Tfh cell subsets contributes to human autoimmunity.


Immunity | 2009

Human Dendritic Cells Induce the Differentiation of Interleukin-21-Producing T Follicular Helper-like Cells through Interleukin-12

Nathalie Schmitt; Rimpei Morita; Laure Bourdery; Salah Eddine Bentebibel; Sandra Zurawski; Jacques Banchereau; Hideki Ueno

T follicular helper (Tfh) cells help development of antibody responses via interleukin-21 (IL-21). Here we show that activated human dendritic cells (DCs) induced naive CD4(+) T cells to become IL-21-producing Tfh-like cells through IL-12. CD4(+) T cells primed with IL-12 induced B cells to produce immunoglobulins in a fashion dependent on IL-21 and inducible costimulator (ICOS), thus sharing fundamental characteristics with Tfh cells. The induction of Tfh-like cells by activated DCs was inhibited by neutralizing IL-12. IL-12 induced two different IL-21-producers: IL-21(+)IFN-gamma(+)T-bet(+) Th1 cells and IL-21(+)IFN-gamma(-)T-bet(-) non-Th1 cells, in a manner dependent on signal transducer and activator of transcription 4 (STAT4). IL-12 also regulated IL-21 secretion by memory CD4(+) T cells. Thus, IL-12 produced by activated DCs regulates antibody responses via developing IL-21-producing Tfh-like cells and inducing IL-21 secretion from memory CD4(+) T cells. These data suggest that the developmental pathway of Tfh cells differs between mice and humans, which have considerable implications for vaccine development.


Nature Medicine | 2012

Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain

Takashi Shichita; Eiichi Hasegawa; Akihiro Kimura; Rimpei Morita; Ryota Sakaguchi; Ichiro Takada; Takashi Sekiya; Hiroaki Ooboshi; Takanari Kitazono; Toru Yanagawa; Tetsuro Ishii; Hideo Takahashi; Shuji Mori; Masahiro Nishibori; Kazumichi Kuroda; Shizuo Akira; Kensuke Miyake; Akihiko Yoshimura

Post-ischemic inflammation is an essential step in the progression of brain ischemia-reperfusion injury. However, the mechanism that activates infiltrating macrophages in the ischemic brain remains to be clarified. Here we demonstrate that peroxiredoxin (Prx) family proteins released extracellularly from necrotic brain cells induce expression of inflammatory cytokines including interleukin-23 in macrophages through activation of Toll-like receptor 2 (TLR2) and TLR4, thereby promoting neural cell death, even though intracellular Prxs have been shown to be neuroprotective. The extracellular release of Prxs in the ischemic core occurred 12 h after stroke onset, and neutralization of extracellular Prxs with antibodies suppressed inflammatory cytokine expression and infarct volume growth. In contrast, high mobility group box 1 (HMGB1), a well-known damage-associated molecular pattern molecule, was released before Prx and had a limited role in post-ischemic macrophage activation. We thus propose that extracellular Prxs are previously unknown danger signals in the ischemic brain and that its blocking agents are potent neuroprotective tools.


Journal of Immunology | 2010

Smad2 and Smad3 Are Redundantly Essential for the TGF-β–Mediated Regulation of Regulatory T Plasticity and Th1 Development

Tomohito Takimoto; Yu Wakabayashi; Takashi Sekiya; Naoko Inoue; Rimpei Morita; Kenji Ichiyama; Reiko Takahashi; Mayako Asakawa; Go Muto; Tomoaki Mori; Eiichi Hasegawa; Saika Shizuya; Toshiro Hara; Masatoshi Nomura; Akihiko Yoshimura

Although it has been well established that TGF-β plays a pivotal role in immune regulation, the roles of its downstream transcription factors, Smad2 and Smad3, have not been fully clarified. Specifically, the function of Smad2 in the immune system has not been investigated because of the embryonic lethality of Smad2-deficient mice. In this study, we generated T cell-specific Smad2 conditional knockout (KO) mice and unexpectedly found that Smad2 and Smad3 were redundantly essential for TGF-β–mediated induction of Foxp3-expressing regulatory T cells and suppression of IFN-γ production in CD4+ T cells. Consistent with these observations, Smad2/Smad3-double KO mice, but not single KO mice, developed fatal inflammatory diseases with higher IFN-γ production and reduced Foxp3 expression in CD4+ T cells at the periphery. Although it has been suggested that Foxp3 induction might underlie TGF-β–mediated immunosuppression, TGF-β still can suppress Th1 cell development in Foxp3-deficient T cells, suggesting that the Smad2/3 pathway inhibits Th1 cell development with Foxp3-independent mechanisms. We also found that Th17 cell development was reduced in Smad-deficient CD4+ T cells because of higher production of Th17-inhibotory cytokines from these T cells. However, TGF-β–mediated induction of RORγt, a master regulator of Th17 cell, was independent of both Smad2 and Smad3, suggesting that TGF-β regulates Th17 development through Smad2/3-dependent and -independent mechanisms.


Nature Immunology | 2013

Nr4a receptors are essential for thymic regulatory T cell development and immune homeostasis

Takashi Sekiya; Ikkou Kashiwagi; Rei Yoshida; Tomohiro Fukaya; Rimpei Morita; Akihiro Kimura; Hiroshi Ichinose; Daniel Metzger; Pierre Chambon; Akihiko Yoshimura

Regulatory T cells (Treg cells) develop from progenitor thymocytes after the engagement of T cell antigen receptors (TCRs) with high-affinity ligands, but the underlying molecular mechanisms are still unclear. Here we show that the Nr4a nuclear receptors, which are encoded by immediate-early genes upregulated by TCR stimulation in thymocytes, have essential roles in Treg cell development. Mice that lacked all Nr4a factors could not produce Treg cells and died early owing to systemic autoimmunity. Nr4a receptors directly activated the promoter of the gene encoding the transcription factor Foxp3, and forced activation of Nr4a receptors bypassed low-strength TCR signaling to drive the Treg cell developmental program. Our results suggest that Nr4a receptors have key roles in determining CD4+ T cell fates in the thymus and thus contribute to immune homeostasis.


Journal of Experimental Medicine | 2011

SOCS1 is essential for regulatory T cell functions by preventing loss of Foxp3 expression as well as IFN-γ and IL-17A production

Reiko Takahashi; Shuhei Nishimoto; Go Muto; Takashi Sekiya; Taiga Tamiya; Akihiro Kimura; Rimpei Morita; Mayako Asakawa; Takatoshi Chinen; Akihiko Yoshimura

SOCS1 is required to restrict IFN-γ and IL-17 expression and maintain Foxp3 expression in and function of regulatory T cells.


Nature Communications | 2011

The nuclear orphan receptor Nr4a2 induces Foxp3 and regulates differentiation of CD4 + T cells

Takashi Sekiya; Ikkou Kashiwagi; Naoko Inoue; Rimpei Morita; Shohei Hori; Herman Waldmann; Alexander Y. Rudensky; Hiroshi Ichinose; Daniel Metzger; Pierre Chambon; Akihiko Yoshimura

Regulatory T cells (Tregs) have a central role in maintaining immune homoeostasis through various mechanisms. Although the Forkhead transcription factor Foxp3 defines the Treg cell lineage and functions, the molecular mechanisms of Foxp3 induction and maintenance remain elusive. Here we show that Foxp3 is one of the direct targets of Nr4a2. Nr4a2 binds to regulatory regions of Foxp3, where it mediates permissive histone modifications. Ectopic expression of Nr4a2 imparts Treg-like suppressive activity to naïve CD4+ T cells by inducing Foxp3 and by repressing cytokine production, including interferon-γ and interleukin-2. Deletion of Nr4a2 in T cells attenuates induction of Tregs and causes aberrant induction of Th1, leading to the exacerbation of colitis. Nr4a2-deficeint Tregs are prone to lose Foxp3 expression and have attenuated suppressive ability both in vitro and in vivo. Thus, Nr4a2 has the ability to maintain T-cell homoeostasis by regulating induction, maintenance and suppressor functions of Tregs, and by repression of aberrant Th1 induction.


Nature Communications | 2015

Bruton’s tyrosine kinase is essential for NLRP3 inflammasome activation and contributes to ischaemic brain injury

Minako Ito; Takashi Shichita; Masahiro Okada; Ritsuko Komine; Yoshiko Noguchi; Akihiko Yoshimura; Rimpei Morita

In this contribution, I discuss an algebraic treatment of alpha-cluster nuclei based on the introduction of a spectrum generating algebra for the relative motion of the alpha-clusters. Particular attention is paid to the discrete symmetry of the geometric arrangement of the alpha-particles, and the consequences for the structure of the rotational bands in the 12C and 16O nuclei.Inflammasome activation has been implicated in various inflammatory diseases including post-ischaemic inflammation after stroke. Inflammasomes mediate activation of caspase-1, which subsequently induces secretion of pro-inflammatory cytokines such as IL-1β and IL-18, as well as a form of cell death called pyroptosis. In this study, we report that Brutons tyrosine kinase (BTK) is an essential component of the NLRP3 inflammasome, in which BTK physically interacts with ASC and NLRP3. Inhibition of BTK by pharmacological or genetic means severely impairs activation of the NLRP3 inflammasome. The FDA-approved BTK inhibitor ibrutinib (PCI-32765) efficiently suppresses infarct volume growth and neurological damage in a brain ischaemia/reperfusion model in mice. Ibrutinib inhibits maturation of IL-1β by suppressing caspase-1 activation in infiltrating macrophages and neutrophils in the infarcted area of ischaemic brain. Our study indicates that BTK is essential for NLRP3 inflammasome activation and could be a potent therapeutic target in ischaemic stroke.


Arthritis & Rheumatism | 2015

Number of Circulating Follicular Helper 2 T Cells Correlates With IgG4 and Interleukin-4 Levels and Plasmablast Numbers in IgG4-Related Disease.

Mitsuhiro Akiyama; Katsuya Suzuki; Kunihiro Yamaoka; Hidekata Yasuoka; Masaru Takeshita; Yuko Kaneko; H. Kondo; Yoshiaki Kassai; Takahiro Miyazaki; Rimpei Morita; Akihiko Yoshimura; Tsutomu Takeuchi

To elucidate the pathologic role of follicular helper T (Tfh) cells and their subsets in active, untreated IgG4‐related disease.


Nature Communications | 2011

Prostaglandin E2 and SOCS1 have a role in intestinal immune tolerance

Takatoshi Chinen; Kyoko Komai; Go Muto; Rimpei Morita; Naoko Inoue; Hideyuki Yoshida; Takashi Sekiya; Ryoko Yoshida; Kazuhiko Nakamura; Ryoichi Takayanagi; Akihiko Yoshimura

Interleukin 10 (IL-10) and regulatory T cells (Tregs) maintain tolerance to intestinal microorganisms. However, Il10−/−Rag2−/− mice, which lack IL-10 and Tregs, remain healthy, suggesting the existence of other mechanisms of tolerance. Here, we identify suppressor of cytokine signalling 1 (SOCS1) as an essential mediator of immune tolerance in the intestine. Socs1−/−Rag2−/− mice develop severe colitis, which can be prevented by the reduction of microbiota and the transfer of IL-10-sufficient Tregs. Additionally, we find an essential role for prostaglandin E2 (PGE2) in the maintenance of tolerance within the intestine in the absence of Tregs. Socs1−/− dendritic cells are resistant to PGE2-mediated immunosuppression because of dysregulated cytokine signalling. Thus, we propose that SOCS1 and PGE2, potentially interacting together, act as an alternative intestinal tolerance mechanism distinct from IL-10 and Tregs.

Collaboration


Dive into the Rimpei Morita's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takahiro Miyazaki

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Yoshiaki Kassai

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge