Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rina Levy is active.

Publication


Featured researches published by Rina Levy.


Structure | 2003

Alternative Conformations of HIV-1 V3 Loops Mimic β Hairpins in Chemokines, Suggesting a Mechanism for Coreceptor Selectivity

Michal Sharon; Naama Kessler; Rina Levy; Susan Zolla-Pazner; Matthias Görlach; Jacob Anglister

The V3 loop of the HIV-1 envelope glycoprotein gp120 is involved in binding to the CCR5 and CXCR4 coreceptors. The structure of an HIV-1(MN) V3 peptide bound to the Fv of the broadly neutralizing human monoclonal antibody 447-52D was solved by NMR and found to be a beta hairpin. This structure of V3(MN) was found to have conformation and sequence similarities to beta hairpins in CD8 and CCR5 ligands MIP-1alpha, MIP-1beta, and RANTES and differed from the beta hairpin of a V3(IIIB) peptide bound to the strain-specific murine anti-gp120(IIIB) antibody 0.5beta. In contrast to the structure of the bound V3(MN) peptide, the V3(IIIB) peptide resembles a beta hairpin in SDF-1, a CXCR4 ligand. These data suggest that the 447-52D-bound V3(MN) and the 0.5beta-bound V3(IIIB) structures represent alternative V3 conformations responsible for selective interactions with CCR5 and CXCR4, respectively.


Structure | 2003

The human type I interferon receptor. NMR structure reveals the molecular basis of ligand binding.

Jordan H. Chill; Sabine R. Quadt; Rina Levy; Gideon Schreiber; Jacob Anglister

The potent antiviral and antiproliferative activities of human type I interferons (IFNs) are mediated by a single receptor comprising two subunits, IFNAR1 and IFNAR2. The structure of the IFNAR2 IFN binding ectodomain (IFNAR2-EC), the first helical cytokine receptor structure determined in solution, reveals the molecular basis for IFN binding. The atypical perpendicular orientation of its two fibronectin domains explains the lack of C domain involvement in ligand binding. A model of the IFNAR2-EC/IFNalpha2 complex based on double mutant cycle-derived constraints uncovers an extensive and predominantly aliphatic hydrophobic patch on the receptor that interacts with a matching hydrophobic surface of IFNalpha2. An adjacent motif of alternating charged side chains guides the two proteins into a tight complex. The binding interface may account for crossreactivity and ligand specificity of the receptor. This molecular description of IFN binding should be invaluable for study and design of IFN-based biomedical agents.


Structure | 2000

NMR Structure of an Anti-Gp120 Antibody Complex with a V3 Peptide Reveals a Surface Important for Co-Receptor Binding

Vitali Tugarinov; Anat Zvi; Rina Levy; Yehezkiel Hayek; Shuzo Matsushita; Jacob Anglister

BACKGROUND The protein 0.5beta is a potent strain-specific human immunodeficiency virus type 1 (HIV-1) neutralizing antibody raised against the entire envelope glycoprotein (gp120) of the HIV-1(IIIB) strain. The epitope recognized by 0.5beta is located within the third hypervariable region (V3) of gp120. Recently, several HIV-1 V3 residues involved in co-receptor utilization and selection were identified. RESULTS Virtually complete sidechain assignment of the variable fragment (Fv) of 0.5beta in complex with the V3(IIIB) peptide P1053 (RKSIRIQRGPGRAFVTIG, in single-letter amino acid code) was accomplished and the combining site structure of 0.5beta Fv complexed with P1053 was solved using multidimensional nuclear magnetic resonance (NMR). Five of the six complementarity determining regions (CDRs) of the antibody adopt standard canonical conformations, whereas CDR3 of the heavy chain assumes an unexpected fold. The epitope recognized by 0.5beta encompasses 14 of the 18 P1053 residues. The bound peptide assumes a beta-hairpin conformation with a QRGPGR loop located at the very center of the binding pocket. The Fv and peptide surface areas buried upon binding are 601 A and 743 A(2), respectively, in the 0.5beta Fv-P1053 mean structure. The surface of P1053 interacting with the antibody is more extensive and the V3 peptide orientation in the binding site is significantly different compared with those derived from the crystal structures of a V3 peptide of the HIV-1 MN strain (V3(MN)) complexed to three different anti-peptide antibodies. CONCLUSIONS The surface of P1053 that is in contact with the anti-protein antibody 0.5beta is likely to correspond to a solvent-exposed region in the native gp120 molecule. Some residues of this region of gp120 are involved in co-receptor binding, and in discrimination between different chemokine receptors utilized by the protein. Several highly variable residues in the V3 loop limit the specificity of the 0.5beta antibody, helping the virus to escape from the immune system. The highly conserved GPG sequence might have a role in maintaining the beta-hairpin conformation of the V3 loop despite insertions, deletions and mutations in the flanking regions.


Nature Structural & Molecular Biology | 1999

A cis proline turn linking two beta-hairpin strands in the solution structure of an antibody-bound HIV-1IIIB V3 peptide.

Vitali Tugarinov; Anat Zvi; Rina Levy; Jacob Anglister

The refined solution structure of an 18-residue HIV-1IIIB V3 peptide in complex with the Fv fragment of an anti-gp120 antibody reveals an unexpected type VI β-turn comprising residues RGPG at the center of a β-hairpin. The central glycine and proline of this turn are linked by a cis peptide bond. The residues of the turn interact extensively with the antibody Fv. 15N{1H} NOE measurements show that the backbone of the peptide, including the central QRGPGR loop, is well ordered in the complex. The solution structure is significantly different from the X-ray structures of HIV-1MN V3 peptides bound to anti-peptide antibodies. These differences could be due to a two-residue (QR) insertion preceding the GPGR sequence in the HIV-1IIIB strain, and the much longer peptide epitope immobilized by the anti-gp120 antibody.


Protein Science | 2006

Determination of the human type I interferon receptor binding site on human interferon-α2 by cross saturation and an NMR-based model of the complex

Sabine R. Quadt-Akabayov; Jordan H. Chill; Rina Levy; Naama Kessler; Jacob Anglister

Type I interferons (IFNs) are a family of homologous helical cytokines that exhibit pleiotropic effects on a wide variety of cell types, including antiviral activity and antibacterial, antiprozoal, immunomodulatory, and cell growth regulatory functions. Consequently, IFNs are the human proteins most widely used in the treatment of several kinds of cancer, hepatitis C, and multiple sclerosis. All type I IFNs bind to a cell surface receptor consisting of two subunits, IFNAR1 and IFNAR2, associating upon binding of interferon. The structure of the extracellular domain of IFNAR2 (R2‐EC) was solved recently. Here we study the complex and the binding interface of IFNα2 with R2‐EC using multidimensional NMR techniques. NMR shows that IFNα2 does not undergo significant structural changes upon binding to its receptor, suggesting a lock‐and‐key mechanism for binding. Cross saturation experiments were used to determine the receptor binding site upon IFNα2. The NMR data and previously published mutagenesis data were used to derive a docking model of the complex with an RMSD of 1 Å, and its well‐defined orientation between IFNα2 and R2‐EC and the structural quality greatly improve upon previously suggested models. The relative ligand–receptor orientation is believed to be important for interferon signaling and possibly one of the parameters that distinguish the different IFN I subtypes. This structural information provides important insight into interferon signaling processes and may allow improvement in the development of therapeutically used IFNs and IFN‐like molecules.


Journal of Molecular Biology | 2011

The Conformation and Orientation of a 27-Residue CCR5 Peptide in a Ternary Complex with HIV-1 gp120 and a CD4-Mimic Peptide.

Einat Schnur; Eran Noah; Inbal Ayzenshtat; Hasmik Sargsyan; Tatsuya Inui; Fa-Xiang Ding; Boris Arshava; Yael Sagi; Naama Kessler; Rina Levy; Tali Scherf; Fred Naider; Jacob Anglister

Interaction of CC chemokine receptor 5 (CCR5) with the human immunodeficiency virus type 1 (HIV-1) gp120/CD4 complex involves its amino-terminal domain (Nt-CCR5) and requires sulfation of two to four tyrosine residues in Nt-CCR5. The conformation of a 27-residue Nt-CCR5 peptide, sulfated at Y10 and Y14, was studied both in its free form and in a ternary complex with deglycosylated gp120 and a CD4-mimic peptide. NMR experiments revealed a helical conformation at the center of Nt-CCR5(1-27), which is induced upon gp120 binding, as well as a helical propensity for the free peptide. A well-defined structure for the bound peptide was determined for residues 7-23, increasing by 2-fold the length of Nt-CCR5s known structure. Two-dimensional saturation transfer experiments and measurement of relaxation times highlighted Nt-CCR5 residues Y3, V5, P8-T16, E18, I23 and possibly D2 as the main binding determinant. A calculated docking model for Nt-CCR5(1-27) suggests that residues 2-22 of Nt-CCR5 interact with the bases of V3 and C4, while the C-terminal segment of Nt-CCR5(1-27) points toward the target cell membrane, reflecting an Nt-CCR5 orientation that differs by 180° from that of a previous model. A gp120 site that could accommodate (CCR5)Y3 in a sulfated form has been identified. The present model attributes a structural basis for binding interactions to all gp120 residues previously implicated in Nt-CCR5 binding. Moreover, the strong interaction of sulfated (CCR5)Tyr14 with (gp120)Arg440 revealed by the model and the previously found correlation between E322 and R440 mutations shed light on the role of these residues in HIV-1 phenotype conversion, furthering our understanding of CCR5 recognition by HIV-1.


Biochemistry | 2010

Intermolecular interactions in a 44 kDa interferon-receptor complex detected by asymmetric reverse-protonation and two-dimensional NOESY

Ilona Nudelman; Sabine R. Akabayov; Einat Schnur; Zohar Biron; Rina Levy; Yingqi Xu; Daiwen Yang; Jacob Anglister

Type I interferons (IFNs) make up a family of homologous helical cytokines initiating strong antiviral and antiproliferative activity. All type I IFNs bind to a common cell surface receptor consisting of two subunits, IFNAR1 and IFNAR2, associating upon binding of interferon. We studied intermolecular interactions between IFNAR2-EC and IFNalpha2 using asymmetric reverse-protonation of the different complex components and two-dimensional homonuclear NOESY. This new approach revealed with an excellent signal-to-noise ratio 24 new intermolecular NOEs between the two molecules despite the low concentration of the complex (0.25 mM) and its high molecular mass (44 kDa). Sequential and side chain assignment of IFNAR2-EC and IFNalpha2 in their binary complex helped assign the intermolecular NOEs to the corresponding protons. A docking model of the IFNAR2-EC-IFNalpha2 complex was calculated on the basis of the intermolecular interactions found in this study as well as four double mutant cycle constraints, previously observed NOEs between a single pair of residues and the NMR mapping of the binding sites on IFNAR2-EC and IFNalpha2. Our docking model doubles the buried surface area of the previous model and significantly increases the number of intermolecular hydrogen bonds, salt bridges, and van der Waals interactions. Furthermore, our model reveals the participation of several new regions in the binding site such as the N-terminus and A helix of IFNalpha2 and the C domain of IFNAR2-EC. As a result of these additions, the orientation of IFNAR2-EC relative to IFNalpha2 has changed by 30 degrees in comparison with a previously calculated model that was based on NMR mapping of the binding sites and double mutant cycle constraints. In addition, the new model strongly supports the recently proposed allosteric changes in IFNalpha2 upon binding of IFNAR1-EC to the binary IFNalpha2-IFNAR2-EC complex.


Journal of Biological Chemistry | 1996

Contribution of Arginine Residues in the RP135 Peptide Derived from the V3 Loop of gp120 to Its Interaction with the Fv Fragment of the 0.5β HIV-1 Neutralizing Antibody

Gabriel A. Faiman; Rina Levy; Jacob Anglister; Amnon Horovitz

The construction, expression, and purification of an active Fv fragment of the 0.5β monoclonal human immunodeficiency virus type 1 (HIV-1) neutralizing antibody is reported. The interaction between the Fv fragment and the RP135 peptide derived from the V3 loop of gp120 from HIV-1IIIB was studied by varying the salt concentration and by mutating arginine residues in the peptide. The mutations R4A, R8A and R11A (which correspond to residues 311, 315, and 318 in gp120 of HIV-1IIIB) reduce the binding free energy by 0.22 (± 0.20), 4.32 (± 0.16), and 1.58 (± 0.17) kcal mol−1, respectively. The salt-dependent components of their contributions to binding are 0.02 (± 0.22), −0.55 (± 0.18), and −0.97 (± 0.19) kcal mol−1, respectively. The magnitudes of the mutational effects and the extent of shielding by 1 M NaCl suggest that Arg-8 is involved in a buried salt bridge in the peptide-Fv fragment complex, whereas Arg-11 is involved in a more solvent-exposed electrostatic interaction.


Biochemical and Biophysical Research Communications | 1984

Possible involvement of actin and myosin in Ca2+ transport through the plasma membrane of chromaffin cells

Orna E. Harish; Rina Levy; Kurt Rosenheck; Avrahem Oplatka

The exocytosis of catecholamines by chromaffin cells following stimulation (e.g. by acetylcholine) is accompanied by a rise in the level of intracellular free Ca2+. Actually, secretion can be induced merely by making the cells leaky to Ca2+ from the external medium. We have recently demonstrated that secretion can be increased by the introduction of DNase-I, the F-actin depolymerizing agent, or of heavy meromyosin, the enzymatically active fragment of myosin. Suspecting that these changes might be associated with a higher intracellular level of Ca2+, we now have measured the influx of 45Ca2+ into chromaffin cells which have undergone fusion with DNase-I- or with heavy meromyosin-loaded liposomes. In both cases, a marked increase in Ca2+ uptake has been observed, which could be abolished by Co2+ ions (a Ca2+ channel blocker), suggesting an intimate involvement of the cellular actomyosin system in the process of Ca2+ ions transport through the Ca2+ channels of the plasma membrane.


Protein Expression and Purification | 2003

Expression, purification, and isotope labeling of the Fv of the human HIV-1 neutralizing antibody 447-52D for NMR studies

Naama Kessler; Anat Zvi; Min Ji; Michal Sharon; Osnat Rosen; Rina Levy; Miroslaw K. Gorny; Suzan Zolla-Pazner; Jacob Anglister

The Fv is the smallest antigen binding fragment of the antibody and is made of the variable domains of the light and heavy chains, V(L) and V(H), respectively. The 26-kDa Fv is amenable for structure determination in solution using multi-dimensional hetero-nuclear NMR spectroscopy. The human monoclonal antibody 447-52D neutralizes a broad spectrum of HIV-1 isolates. This anti-HIV-1 antibody elicited in an infected patient is directed against the third variable loop (V3) of the envelope glycoprotein (gp120) of the virus. The V3 loop is an immunodominant neutralizing epitope of HIV-1. To obtain the 447-52D Fv for NMR studies, an Escherichia coli bicistronic expression vector for the heterodimeric 447-52D Fv and vectors for single chain Fv and individually expressed V(H) and V(L) were constructed. A pelB signal peptide was linked to the antibody genes to enable secretion of the expressed polypeptides into the periplasm. For easy cloning of any antibody gene without potential modification of the antibody sequence, restriction sites were introduced in the pelB sequence and following the termination codon. A set of oligonucleotides that prime the leader peptide genes of all potential antibody human antibodies were designed as backward primers. The forward primers for the V(L) and V(H) were based on constant region sequences. The 447-52D Fv could not be expressed either by a bicistronic vector or as single chain Fv, probably due to its toxicity to Escherichia coli. High level of expression was obtained by individual expression of the V(H) and the V(L) chains, which were then purified and recombined to generate a soluble and active 447-52D Fv fragment. The V(L) of mAb 447-52D was uniformly labeled with 13C and 15N nuclei (U-13C/15N). Preliminary NMR spectra demonstrate that structure determination of the recombinant 447-52D Fv and its complex with V3 peptides is feasible.

Collaboration


Dive into the Rina Levy's collaboration.

Top Co-Authors

Avatar

Jacob Anglister

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Naama Kessler

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Tali Scherf

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Anat Zvi

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Einat Schnur

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Gideon Schreiber

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Michal Sharon

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Vitali Tugarinov

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Eran Noah

Weizmann Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge