Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rinki Ratnapriya is active.

Publication


Featured researches published by Rinki Ratnapriya.


Nature Genetics | 2013

Identification of a rare coding variant in complement 3 associated with age-related macular degeneration

Xiaowei Zhan; David E. Larson; Chaolong Wang; Daniel C. Koboldt; Yuri V. Sergeev; Robert S. Fulton; Lucinda Fulton; Catrina C. Fronick; Kari Branham; Jennifer L. Bragg-Gresham; Goo Jun; Youna Hu; Hyun Min Kang; Dajiang J. Liu; Mohammad Othman; Matthew Brooks; Rinki Ratnapriya; Alexis Boleda; Felix Grassmann; Claudia N. von Strachwitz; Lana M. Olson; Gabriëlle H.S. Buitendijk; Albert Hofman; Cornelia M. van Duijn; Valentina Cipriani; Anthony T. Moore; Humma Shahid; Yingda Jiang; Yvette P. Conley; Denise J. Morgan

Macular degeneration is a common cause of blindness in the elderly. To identify rare coding variants associated with a large increase in risk of age-related macular degeneration (AMD), we sequenced 2,335 cases and 789 controls in 10 candidate loci (57 genes). To increase power, we augmented our control set with ancestry-matched exome-sequenced controls. An analysis of coding variation in 2,268 AMD cases and 2,268 ancestry-matched controls identified 2 large-effect rare variants: previously described p.Arg1210Cys encoded in the CFH gene (case frequency (fcase) = 0.51%; control frequency (fcontrol) = 0.02%; odds ratio (OR) = 23.11) and newly identified p.Lys155Gln encoded in the C3 gene (fcase = 1.06%; fcontrol = 0.39%; OR = 2.68). The variants suggest decreased inhibition of C3 by complement factor H, resulting in increased activation of the alternative complement pathway, as a key component of disease biology.


Clinical Genetics | 2013

Age-related macular degeneration-clinical review and genetics update.

Rinki Ratnapriya; Emily Y. Chew

Age‐related macular degeneration (AMD) is the leading cause of central vision impairment in persons over the age of 50 years in developed countries. Both genetic and non‐genetic (environmental) factors play major roles in AMD etiology, and multiple gene variants and lifestyle factors such as smoking have been associated with the disease. While dissecting the basic etiology of the disease remains a major challenge, current genetic knowledge has provided opportunities for improved risk assessment, molecular diagnosis and clinical testing of genetic variants in AMD treatment and management. This review addresses the potential of translating the wealth of genetic findings for improved risk prediction and therapeutic intervention in AMD patients. Finally, we discuss the recent advancement in genetics and genomics and the future prospective of personalized medicine in AMD patients.


Ophthalmology | 2014

No Clinically Significant Association between CFH and ARMS2 Genotypes and Response to Nutritional Supplements: AREDS Report Number 38

Emily Y. Chew; Michael L. Klein; Traci E. Clemons; Elvira Agrón; Rinki Ratnapriya; Albert O. Edwards; Lars G. Fritsche; Anand Swaroop; Gonçalo R. Abecasis

OBJECTIVE To determine whether genotypes at 2 major loci associated with late age-related macular degeneration (AMD), complement factor H (CFH) and age-related maculopathy susceptibility 2 (ARMS2), influence the relative benefits of Age-Related Eye Disease Study (AREDS) supplements. DESIGN Unplanned retrospective evaluation of a prospective, randomized, placebo-controlled clinical trial of vitamins and minerals for the treatment of AMD. SUBJECTS AREDS participants (mean age, 69 years) who were at risk of developing late AMD and who were randomized to the 4 arms of AREDS supplement treatment. METHODS Analyses were performed using the Cox proportional hazards model to predict progression to late AMD (neovascular or central geographic atrophy). Statistical models, adjusted for age, gender, smoking status, and baseline AMD severity, were used to examine the influence of genotypes on the response to therapy with 4 randomly assigned arms of AREDS supplement components: placebo, antioxidants (vitamin C, vitamin E, β-carotene), zinc, or a combination. MAIN OUTCOME MEASURES The influence of the genotype on the relative treatment response to the randomized components of the AREDS supplement, measured as progression to late AMD. RESULTS Of the 1237 genotyped AREDS participants of white ethnicity, late AMD developed in 385 (31.1%) during the mean follow-up of 6.6 years. As previously demonstrated, CFH genotype (P = 0.005), ARMS2 (P< 0.0001), and supplement were associated individually with progression to late AMD. An interaction analysis found no evidence that the relative benefits of AREDS supplementation varied by genotype. Analysis of (1) CFH rs1061170 and rs1410996 combined with ARMS2 rs10490924 with the 4 randomly assigned arms of AREDS supplement and (2) analysis of the combination of CFH rs412852 and rs3766405 with ARMS2 c.372_815del443ins54 with the AREDS components resulted in no interaction (P = 0.06 and P = 0.45, respectively, before multiplicity adjustment). CONCLUSIONS The AREDS supplements reduced the rate of AMD progression across all genotype groups. Furthermore, the genotypes at the CFH and ARMS2 loci did not statistically significantly alter the benefits of AREDS supplements. Genetic testing remains a valuable research tool, but these analyses suggest it provides no benefits in managing nutritional supplementation for patients at risk of late AMD.


Journal of Clinical Investigation | 2014

OTX2 loss causes rod differentiation defect in CRX-associated congenital blindness

Jerome E. Roger; Avinash Hiriyanna; Norimoto Gotoh; Hong Hao; Debbie F. Cheng; Rinki Ratnapriya; Marie-Audrey Ines Kautzmann; Bo Chang; Anand Swaroop

Leber congenital amaurosis (LCA) encompasses a set of early-onset blinding diseases that are characterized by vision loss, involuntary eye movement, and nonrecordable electroretinogram (ERG). At least 19 genes are associated with LCA, which is typically recessive; however, mutations in homeodomain transcription factor CRX lead to an autosomal dominant form of LCA. The mechanism of CRX-associated LCA is not understood. Here, we identified a spontaneous mouse mutant with a frameshift mutation in Crx (CrxRip). We determined that CrxRip is a dominant mutation that results in congenital blindness with nonrecordable response by ERG and arrested photoreceptor differentiation with no associated degeneration. Expression of LCA-associated dominant CRX frameshift mutations in mouse retina mimicked the CrxRip phenotype, which was rescued by overexpression of WT CRX. Whole-transcriptome profiling using deep RNA sequencing revealed progressive and complete loss of rod differentiation factor NRL in CrxRip retinas. Expression of NRL partially restored rod development in CrxRip/+ mice. We show that the binding of homeobox transcription factor OTX2 at the Nrl promoter was obliterated in CrxRip mice and ectopic expression of OTX2 rescued the rod differentiation defect. Together, our data indicate that OTX2 maintains Nrl expression in developing rods to consolidate rod fate. Our studies provide insights into CRX mutation-associated congenital blindness and should assist in therapeutic design.


PLOS ONE | 2015

Clinical and genetic factors associated with progression of geographic atrophy lesions in age-related macular degeneration

Felix Grassmann; Monika Fleckenstein; Emily Y. Chew; Tobias Strunz; Steffen Schmitz-Valckenberg; Arno P. Göbel; Michael L. Klein; Rinki Ratnapriya; Anand Swaroop; Frank G. Holz; Bernhard H. F. Weber

Worldwide, age-related macular degeneration (AMD) is a serious threat to vision loss in individuals over 50 years of age with a pooled prevalence of approximately 9%. For 2020, the number of people afflicted with this condition is estimated to reach 200 million. While AMD lesions presenting as geographic atrophy (GA) show high inter-individual variability, only little is known about prognostic factors. Here, we aimed to elucidate the contribution of clinical, demographic and genetic factors on GA progression. Analyzing the currently largest dataset on GA lesion growth (N = 388), our findings suggest a significant and independent contribution of three factors on GA lesion growth including at least two genetic factors (ARMS2_rs10490924 [P < 0.00088] and C3_rs2230199 [P < 0.00015]) as well as one clinical component (presence of GA in the fellow eye [P < 0.00023]). These correlations jointly explain up to 7.2% of the observed inter-individual variance in GA lesion progression and should be considered in strategy planning of interventional clinical trials aimed at evaluating novel treatment options in advanced GA due to AMD.


Scientific Reports | 2015

Whole Exome Sequencing Reveals Mutations in Known Retinal Disease Genes in 33 out of 68 Israeli Families with Inherited Retinopathies.

Avigail Beryozkin; Elia Shevah; Adva Kimchi; Liliana Mizrahi-Meissonnier; Samer Khateb; Rinki Ratnapriya; Csilla H. Lazar; Anat Blumenfeld; Tamar Ben-Yosef; Yitzhak Hemo; Jacob Pe’er; Eduard Averbuch; Michal Sagi; Alexis Boleda; Linn Gieser; Abraham Zlotogorski; Tzipora C. Falik-Zaccai; Ola Alimi-Kasem; Samuel G. Jacobson; Itay Chowers; Anand Swaroop; Eyal Banin; Dror Sharon

Whole exome sequencing (WES) is a powerful technique for identifying sequence changes in the human genome. The goal of this study was to delineate the genetic defects in patients with inherited retinal diseases (IRDs) using WES. WES was performed on 90 patient DNA samples from 68 families and 226 known genes for IRDs were analyzed. Sanger sequencing was used to validate potential pathogenic variants that were also subjected to segregation analysis in families. Thirty-three causative mutations (19 novel and 14 known) in 25 genes were identified in 33 of the 68 families. The vast majority of mutations (30 out of 33) have not been reported in the Israeli and the Palestinian populations. Nine out of the 33 mutations were detected in additional families from the same ethnic population, suggesting a founder effect. In two families, identified phenotypes were different from the previously reported clinical findings associated with the causative gene. This is the largest genetic analysis of IRDs in the Israeli and Palestinian populations to date. We also demonstrate that WES is a powerful tool for rapid analysis of known disease genes in large patient cohorts.


Human Molecular Genetics | 2014

Rare and common variants in extracellular matrix gene Fibrillin 2 (FBN2) are associated with macular degeneration

Rinki Ratnapriya; Xiaowei Zhan; Robert N. Fariss; Kari Branham; David Zipprer; Christina Chakarova; Yuri V. Sergeev; Maria M. Campos; Mohammad Othman; James S. Friedman; Arvydas Maminishkis; Naushin Waseem; Matthew Brooks; Harsha Rajasimha; Albert O. Edwards; Andrew J. Lotery; Barbara E. K. Klein; Barbara Truitt; Bingshan Li; Debra A. Schaumberg; Denise J. Morgan; Margaux A. Morrison; Eric H. Souied; Evangelia E. Tsironi; Felix Grassmann; Gerald A. Fishman; Giuliana Silvestri; Hendrik P. N. Scholl; Ivana K. Kim; Jacqueline Ramke

Neurodegenerative diseases affecting the macula constitute a major cause of incurable vision loss and exhibit considerable clinical and genetic heterogeneity, from early-onset monogenic disease to multifactorial late-onset age-related macular degeneration (AMD). As part of our continued efforts to define genetic causes of macular degeneration, we performed whole exome sequencing in four individuals of a two-generation family with autosomal dominant maculopathy and identified a rare variant p.Glu1144Lys in Fibrillin 2 (FBN2), a glycoprotein of the elastin-rich extracellular matrix (ECM). Sanger sequencing validated the segregation of this variant in the complete pedigree, including two additional affected and one unaffected individual. Sequencing of 192 maculopathy patients revealed additional rare variants, predicted to disrupt FBN2 function. We then undertook additional studies to explore the relationship of FBN2 to macular disease. We show that FBN2 localizes to Bruchs membrane and its expression appears to be reduced in aging and AMD eyes, prompting us to examine its relationship with AMD. We detect suggestive association of a common FBN2 non-synonymous variant, rs154001 (p.Val965Ile) with AMD in 10 337 cases and 11 174 controls (OR = 1.10; P-value = 3.79 × 10(-5)). Thus, it appears that rare and common variants in a single gene--FBN2--can contribute to Mendelian and complex forms of macular degeneration. Our studies provide genetic evidence for a key role of elastin microfibers and Bruchs membrane in maintaining blood-retina homeostasis and establish the importance of studying orphan diseases for understanding more common clinical phenotypes.


Genome Medicine | 2013

Genetic architecture of retinal and macular degenerative diseases: the promise and challenges of next-generation sequencing

Rinki Ratnapriya; Anand Swaroop

Inherited retinal degenerative diseases (RDDs) display wide variation in their mode of inheritance, underlying genetic defects, age of onset, and phenotypic severity. Molecular mechanisms have not been delineated for many retinal diseases, and treatment options are limited. In most instances, genotype-phenotype correlations have not been elucidated because of extensive clinical and genetic heterogeneity. Next-generation sequencing (NGS) methods, including exome, genome, transcriptome and epigenome sequencing, provide novel avenues towards achieving comprehensive understanding of the genetic architecture of RDDs. Whole-exome sequencing (WES) has already revealed several new RDD genes, whereas RNA-Seq and ChIP-Seq analyses are expected to uncover novel aspects of gene regulation and biological networks that are involved in retinal development, aging and disease. In this review, we focus on the genetic characterization of retinal and macular degeneration using NGS technology and discuss the basic framework for further investigations. We also examine the challenges of NGS application in clinical diagnosis and management.


Investigative Ophthalmology & Visual Science | 2015

Whole Exome Sequencing Reveals GUCY2D as a Major Gene Associated With Cone and Cone–Rod Dystrophy in Israel

Csilla H. Lazar; Mousumi Mutsuddi; Adva Kimchi; Lina Zelinger; Liliana Mizrahi-Meissonnier; Devorah Marks-Ohana; Alexis Boleda; Rinki Ratnapriya; Dror Sharon; Anand Swaroop; Eyal Banin

PURPOSE The Israeli population has a unique genetic make-up, with a high prevalence of consanguineous marriages and autosomal recessive diseases. In rod-dominated phenotypes, disease-causing genes and mutations that differ from those identified in other populations often are incurred. We used whole exome sequencing (WES) to identify genetic defects in Israeli families with cone-dominated retinal phenotypes. METHODS Clinical analysis included family history, detailed ocular examination, visual function testing, and retinal imaging. Whole exome sequencing, followed by segregation analysis, was performed in 6 cone-dominated retinopathy families in which prior mutation analysis did not reveal the causative gene. Based on the WES findings, we screened 106 additional families with cone-dominated phenotypes. RESULTS The WES analysis revealed mutations in known retinopathy genes in five of the six families: two pathogenic mutations in the GUCY2D gene in three families, and one each in CDHR1 and C8orf37. Targeted screening of additional cone-dominated families led to identification of GUCY2D mutations in four other families, which included two highly probable novel disease-causing variants. CONCLUSIONS Our study suggested that GUCY2D is a major cause of autosomal dominant cone and cone-rod dystrophies in Israel; this is similar to other Caucasian populations and is in contrast with retinitis pigmentosa (primary rod disease), where the genetic make-up of the Israeli population is distinct from other ethnic groups. We also conclude that WES permits more comprehensive and rapid analyses that can be followed by targeted screens of larger samples to delineate the genetic structure of retinal disease in unique population cohorts.


Progress in Retinal and Eye Research | 2016

Next generation sequencing technology and genomewide data analysis: Perspectives for retinal research.

Vijender Chaitankar; Gökhan Karakülah; Rinki Ratnapriya; Felipe O. Giuste; Matthew Brooks; Anand Swaroop

The advent of high throughput next generation sequencing (NGS) has accelerated the pace of discovery of disease-associated genetic variants and genomewide profiling of expressed sequences and epigenetic marks, thereby permitting systems-based analyses of ocular development and disease. Rapid evolution of NGS and associated methodologies presents significant challenges in acquisition, management, and analysis of large data sets and for extracting biologically or clinically relevant information. Here we illustrate the basic design of commonly used NGS-based methods, specifically whole exome sequencing, transcriptome, and epigenome profiling, and provide recommendations for data analyses. We briefly discuss systems biology approaches for integrating multiple data sets to elucidate gene regulatory or disease networks. While we provide examples from the retina, the NGS guidelines reviewed here are applicable to other tissues/cell types as well.

Collaboration


Dive into the Rinki Ratnapriya's collaboration.

Top Co-Authors

Avatar

Anand Swaroop

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Emily Y. Chew

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew Brooks

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Dror Sharon

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Csilla H. Lazar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Freekje van Asten

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lars G. Fritsche

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Eyal Banin

Hebrew University of Jerusalem

View shared research outputs
Researchain Logo
Decentralizing Knowledge